STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted from the academic year 2019-20 and thereafter) SUBJECT CODE: 19CH/PE/CP15

M. Sc. DEGREE EXAMINATION, APRIL 2021 BRANCH IV- CHEMISTRY FOURTH SEMESTER

COURSE: MAJOR ELECTIVE

PAPER: CORROSION AND ITS PREVENTION

TIME: 90 MINUTES MAX MARKS: 50

SECTION A (11 X 1 = 11)

Answer All Questions

T	Fill	in	the	blan	ke
1	T, III		unc	viaii	c_{2}

1	The metal which is considered to have ultimate resistance to corrosion is
2	A constant OCP over long periods of time (minutes) indicates that the system may be
3	The type of corrosion that occurs due to concentration difference inside the component is

II Match the following

	Column I		Column II	
4	Dry Corrosion	A	Precipitates on metal	
5	Ethanolamine	В	Oxygen Scavenger	
6	Chromates	С	Localised Corrosion	
7	Pitting Corrosion	D	Increases with increase in temperature	
8	Hydrazine	Е	Passivating Inhibitor	
		F	Adsorption on metal	

III Answer in a line or two

- 9 What is the significance of NACE test methods?
- What are biofilms?
- 11 Represent an electrode concentration cell.

SECTION - B

Answer	anv	three	0	uestions

 $(3 \times 8 = 24 \text{marks})$

(2)

12. (a) Consider the half reactions

$$Zn^{2+} (aq) + 2e^{-} \rightarrow Zn(s)$$
 $E^{o} = -0.763 \text{ V}$
 $Pb^{2+} (aq) + 2e^{-} \rightarrow Pb(s)$ $E^{o} = -0.126 \text{ V}$ (2)

- (i) Combine the two to form an electrochemical cell such that reaction is spontaneous and give the reaction.
- (ii) Represent the cell (2)
- (iii) Calculate E_{cell} for the given electrochemical cell.
- (iv) Calculate free energy change for the reaction. (2)
- 13. With the help of an example explain galvanic corrosion (8)
- 14. Define passivity. Using a graphical representation explain the corrosion (2+6) characteristics of a metal based on its passivity
- 15. Derive an expression for corrosion rate in terms of current density. (8)

SECTION - C

Answer any one Question

(1x 15 = 15 marks)

- 16. (a) Discuss Anodic polarisation and cathodic polarisation (8)
 - (b) (i) A loss of 50 g has been reported for a sheet of carbon steel of dimensions (5)
 1 m X 4 m in a period of 8 months. Convert that mass loss to a penetration rate of the steel in mm units. Calculate the corrosion rate in g m⁻² day⁻¹?
 - (ii) 12 g of zinc metal are dissolved in a 1 M HCl solution. Calculate the (2) coulombs of current produced by the anodic process?
- 17. (a) What is mixed potential theory? Discuss its hypothesis (7)
 - (b) (i) Enumerate the five different methods used to combat corrosion. (5)
 - (ii) Explain the principle of impressed current cathodic potential (3)
