STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086.

(For candidates admitted during the academic year 2008-09)

SUBJECT CODE: PH/MC/TS24

B.Sc. DEGREE EXAMINATION APRIL 2009

BRANCH III - PHYSICS SECOND SEMESTER

DEC M
REG No

MAJOR - CORE COURSE

PAPER THERMAL PHYSICS AND STATISTICAL MECHANICS TIME 30 MINS. MAX. MARKS: 30

SECTION - A

TO BE ANSWERED IN THE QUESTION PAPER ITSELF

ANSWER ALL QUESTIONS: $(30 \times 1 = 30)$

- I CHOOSE THE CORRECT ANSWER:
- 1. The equation of adiabatic process is
 - a) $PV^{r} = constant$ b) PV = constant
- c) P r = k d) PV = k

- 2. Black body is
 - a) good radiator and absorber
- b) radiator

c) absorber

- d) reflector
- 3. Weins displacement law is
 - a) $\lambda_m TIk$

- b) $\lambda_m = k$ c) $\lambda_m k = T$ d) $\lambda_m = \frac{1}{T}$
- 4. The coefficient of viscosity of gas is directly proportional to square root of its
 - a) temperature
- b) pressure
- c) volume
- d) velocity

- 5. For a cyclic process

 - a) $\oint du = 0$ b) $\oint dv = 0$ c) $\oint ds = 0$ d) $\oint \Delta w = 0$

- 6. The carnots engine is perfectly
 - a) reversible
- b) irreversible
- c) cyclic
- d) non-cyclic
- 7. The efficiency of carnots engine working between 127°C and 27°C is
 - a) $\eta = 25\%$
- b) $\eta = 50\%$
- c) $\eta = 75\%$
- d) $\eta = 100\%$

- 8. Change in entropy is
 - a) $ds = \frac{\Delta V}{T}$ b) $ds = \frac{\delta H}{T}$ c) $ds = \frac{\delta M}{T}$

9.	, 1	zero energy		
	c) energy) work done		
10.	· · · · · · · · · · · · · · · · · · ·) three dimensional) two dimensional	-	
11.	According to Plank's hypothesis			
	a) $E = nhv$ b) nh) nv	d) n/v	
12.	Stirling's approximation is	$\log x = 1/e$		
		$\log x = 1/e$ $\log_e x = x \log x$		
	c) $\log x = 1/x$	$\int \log_e x - x \log x$		
13.	Instrument used to measure low temperature a) Cryostat b) Thermostat c)	e is called Electrostat	d) Rheostat	
14.	,	k called) zero) main temperatur	re	
15.	,) demagnetization) isothermal dema		
II	STATE WHETHER TRUE OR FALSE:			
16.	Heat is disorder			
17.	In Maxwell – Boltzmann distribution particl	es are distinguisha	ble	
18.	In adiabatic process temperature does not re	main constant.		
19.	The gas equation is $PV = RT$			
20.	Rayleigh Jean law is $E_{\lambda} = \frac{8\Pi kT}{\lambda 4}$			
III	FILL IN THE BLANKS:			
21.	The particles which obey Bose Einstein statistics are called			
22.	The unit of Thermal conductivity is			
23.	The external physical properties of a substan	ice is called	state.	

24.	Energy associated with each degree of freedom is
25.	$E = \sigma T^4$ is calledlaw.
IV	ANSWER BRIEFLY:
26.	State Zeroth law of Thermodynamics.
27.	What is meant by entropy.
28.	Define Inversion temperture.
29.	What are Fermions.
30.	State Wien's law.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086.

(For candidates admitted during the academic year 2008-09)

SUBJECT CODE: PH/MC/TS24

B.Sc. DEGREE EXAMINATION APRIL 2009

BRANCH III - PHYSICS **SECOND SEMESTER**

COURSE : MAJOR – CORE

PAPER : THERMAL PHYSICS AND STATISTICAL MECHANICS
TIME : 2 ½ HOURS MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 1. Calculate the average kinetic energy of a molecule of a gas at a temperature of 300K.
- 2. Calculate the mean free path of a gas molecule given that the molecule diameter is 2×10^{-6} cm and the number of molecule per CC is 3×10^{10} .
- 3. Calculate the change in entropy when 0.5kg of water at its boiling point, becomes steam at some temperature (Latent heat of steam = 23×10^5 Joule / kg).
- 4. In a heat engine of efficiency 0.2, the source temperature is 500k. Find the efficiency of the engine when the source temperature is doubled.
- 5. Calculate the radiant emittance of a black body at a temperature of (i) 400k (ii) 4000k σ = 5.672 x 10⁻⁸ mks units.
- 6. Compare Bose Einstein, Maxwell Boltnzmann and Fermi Dirac statistics.
- 7. Describe the experimental method of liquefying Helium.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 15 = 45)$

- 8. Obtain expression for viscosity of gas using kinetic theory of gases.
- 9. From the first principle obtain Planck's law. Obtain Weins and Rayleigh Jeans law from Planck's law.
- 10. Deduce Maxwell's thermodynamical relations.
- 11. Write note on a) black body radiation b) Thermodynamic potentials c) Importance of T-S diagram.
- 12. Explain adiabatic demagnetisation of para magnetic salt with theory and experiment.

