STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086.

(For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE: PH/MC/SS64

B.Sc. DEGREE EXAMINATION APRIL 2009

BRANCH III - PHYSICS SIXTH SEMESTER

		REG. N	lo			
COUI PAPE TIME		PHYSICS	AX. MARKS : 30			
SECTION – A						
	TO BE ANSWERED II	N THE QUESTION PAPER	TITSELF			
	ANSWER ALL QUESTIONS	S:	$(30 \times 1 = 30)$			
I	CHOOSE THE CORRECT A	NSWER:				
1.	The energy required to remove a) Binding Energy c) Ionisation Energy	the outer electron from the I b) Cohesive Ene d) Dissociation I	ergy			
2.	The nature of bonding in CH ₄ a) Covalent b) Ionic	is c) Metallic	d) Dispersion			
3.	The bond that exist in Hydrog a) Hydrogen Bonding c) Covalent	en Flouride is b) Vanderwaal's d) Ionic	Bonding			
4.	An extra atom in the interstice a) Schottky Defect b) Frenk		m d) Interstial atom			
5.	If the atoms are displaced in twit is called a) Edge Dislocation c) Imperfections	vo separate planes perpendicu b) Burger's Dislo d) Stacking Defe	ocation			
6.	The motion of dislocation is po a) climb b) slip	ossible by c) glide	d) All of these			
7.	Ohms law relates to the electrical $J = \frac{E}{\sigma^2}$ b) $J = \sigma$	<u>~</u>	current density J as $d) J = \sigma E$			

8.	Which of the following relation gives Wiedmann-Franz law?				
	a) $\frac{\sigma_T}{\sigma} = LT$	b) $\frac{\sigma}{\sigma_T} = LT$	c) $\frac{\sigma_T}{\sigma} = \frac{L}{\Gamma}$	d) $\frac{\sigma}{\sigma_T} = \frac{T}{L}$	
9.	If E_H , J_x and B_z are the Hall field, current density and magnetic field strength, then the Hall constant is given by				
	a) $R_H = \frac{E_H}{J_x}$	b) $R_H = \frac{J_x}{B_z}$	c) $R_H = \frac{B_Z}{E_H/J_x}$	d) none of these	
10.	Which of the follow a) Paramagnetic c) Ferromagnetic	ing material doesn't h	nave permanent magr b) Diamagnetic d) Anti-Ferromagn		
11.	Curie-Weiss Law is				
	a) $X_m = \frac{C}{T}$	b) $X_m = \frac{C}{\theta}$	c) $X_m = \frac{E}{T - \theta}$	$d) X_m = \frac{T - \theta}{C}$	
12.	The transition temporal of to 10K	erature of most supero b) 10K to 20K	conducting elements l c) 20K to 50K		
13.		erature of mercury is b) 1.14K	c) 2.28K	d) 6.42K	
14.		ergy gap of a super cob) $3.5K_BT_C$			
15.		peratures, C_v is equal b) $2Ru$		d) 5Ru	
II	FILL IN THE BLANKS:				
16.	The bond angle between two hydrogen atoms in a water molecule is				
17.	If the atoms are arranged in a periodic manner, than it is a				
18.	Magnetic Induction and Magnetic field Intensity are related by the equation				
19.	Susceptibility is maximum at temperature.				
20.	Superconductivity was discovered by				
III	STATE WHETHER TRUE OF FALSE:				

MgO is an example for Ionic bonding.

21.

22.	Schottky Defect is a surface Defect.
23.	Ferromagnetic materials or Ferrites are obtained from Aluminium.
24.	Zinc is used for making permanent magnets.
25.	Superconductivity state is more ordered than the normal state for type I superconductors.
IV	ANSWER IN ONE OR TWO SENTENCES:
26.	Give any two characteristics of Ionic bond.
27.	What are F-centres?
28.	Give any one example for Ferromagnetic element.
29.	Give one application of superconductors.

What are phonons?

30.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086.

(For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE: PH/MC/SS64

B.Sc. DEGREE EXAMINATION APRIL 2009

BRANCH III - PHYSICS SIXTH SEMESTER

COURSE : MAJOR - CORE

PAPER : **SOLID STATE PHYSICS**

TIME : 2 ½ HOURS MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 1. Explain the directional nature of covalent bond.
- 2. Explain Screw Dislocation.
- 3. Obtain the expression for electrical conductivity and thermal conductivity.
- 4. Explain the Weiss theory of paramagnatism.
- 5. Explain the Meissner effect.
- 6. Explain Quantum tunneling.
- 7. Explain any two surface defects.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 15 = 45)$

- 8. a) Define Lattice Energy.
 - b) What is Madeling constant.
 - c) Explain the potential energy diagram of a Ionic molecule.
- 9. Explain Schottky and Frenkel defect.
- 10. What is Hall effect? Explain how Hall coefficient can be determined experimentally.
- 11. Explain any 3 thermodynamic properties of superconductors.
- 12. Distinguish Dia, para and Ferromagnetic substances.

