STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086.
(For candidates admitted during the academic year 2004-05 \& thereafter)
SUBJECT CODE : PH/MC/QM64

B.Sc. DEGREE EXAMINATION APRIL 2009

BRANCH III - PHYSICS SIXTH SEMESTER

REG. No. \qquad
COURSE : MAJOR - CORE PAPER : QUANTUM MECHANICS TIME : 30 MINS.

MAX. MARKS : 30

SECTION - A

TO BE ANSWERED IN THE QUESTION PAPER ITSELF

ANSWER ALL QUESTIONS:
$(30 \times 1=30)$

I CHOOSE THE CORRECT ANSWER:

1. Any \qquad particle has wave nature associated with it.
a) charged
b) moving
c) tiny
2. If the momentum of two particles are in the ratio 1: 0.5 , their de Broglie wavelengths will be in the ratio
a) $2: 1$
b) $1: 2$
c) $4: 1$
3. The product of uncertainties of energy and \qquad is equal to or greater than $\hbar / 2$
a) position
b) angle
c) time
4. A wave function is said to be normalized if
a) $\int \psi^{*} \psi d \tau=0$
b) $\int \psi^{*} \psi d \tau=1$
c) $\int \psi^{*} \psi d \tau=\infty$
5. Which of the following is an admissible wave function?
a) y^{2}
b) $e^{|x|}$
c) $\mathrm{A} \sin \alpha x$
6. The product of two \qquad Hermitian operators is Hermitian
a) singular
b) non commuting
c) commuting
7. Unitary operator is the one for which its adjoint is equal to
a) itself
b) its inverse
c) its complex conjugate
8. The probability of a particle tunneling through a potential barrier
a) decreases with mass
b) increases with mass
c) independent of its mass
9. The binding energy of an electron must be
a) positive
b) negative
c) zero
10. The spacing between the energy levels of a linear harmonic oscillator is
a) $\mathrm{h} v$
b) $1 / 2 \mathrm{~h} v$
c) zero
11. The zero point energy in eV of an oscillator with a period of 1 second is
a) 2.07×10^{-15}
b) 3.2×10^{-34}
c) 2.07×10^{-15}
12. A \qquad is an example of a spherically symmetric system.
a) particle in a box
b) LHO
c) rigid rotator
13. The $\mathrm{n}^{\text {th }}$ energy level of Hydrogen atom is \qquad fold degenerate.
a) n
b) n^{2}
c) $2 \mathrm{n}+1$
14. Eigen functions of Hermitian operators belonging to different eigen values are
a) normalized
b) orthogonal
c) orthonormal
15. $\left\lfloor L_{x}, L_{y}\right\rfloor=$ \qquad
a) $i \hbar$
b) 0
c) $i \hbar L_{z}$

II STATE WHETHER TRUE OR FALSE:
16. Hamiltonian operator is a Hermitian operator.
17. Planck's constant is a number without dimension.
18. The expectation value of momentum is given by $-i \hbar \partial \psi / \partial x$
19. There is no reflection of a particle approaching a potential step with $\mathrm{E}>\mathrm{Vo}$.
20. $\left[\mathrm{x}, \mathrm{p}_{\mathrm{x}}\right]=\left[\mathrm{p}_{\mathrm{x}}, \mathrm{x}\right]$

III FILL IN THE BLANKS:
21. A free particle moves in a region of constant \qquad .
22. A wave has phase velocity but a wave packet has \qquad velocity.
23. The average result of a number of measurements made on a system is known as
\qquad —.
24. Quantum states with the same energy are said to be \qquad -
25. The eigen values of the parity operator are \qquad .

IV ANSWER THE FOLLOWING:
26. What are canonically conjugate variables?
27. Give the conditions for a set of functions to be orthogonal.
28. Comment on the zero point energy of a linear harmonic oscillator.
29. Write down Schrödinger equation for a linear harmonic oscillator.
30. What are ladder operators?
288888%

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086.
(For candidates admitted during the academic year 2004-05 \& thereafter)
SUBJECT CODE : PH/MC/QM64

B.Sc. DEGREE EXAMINATION APRIL 2009

BRANCH III - PHYSICS SIXTH SEMESTER

COURSE	$:$	MAJOR - CORE
PAPER	$:$	QUANTUM MECHANICS
TIME	$:$	$\mathbf{2 1} 1 / 2$ HOURS

MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

1. The average kinetic energy of a thermal neutron is $(3 / 2) \mathrm{kT}$. Determine the deBroglie wavelength associated with the neutron in thermal equilibrium at 350 K . (Boltzmann constant $=1.38 \times 10^{-23} \mathrm{~J} /$ Kelvin).
2. An oil drop of mass $2 \times 10^{-12} \mathrm{~g}$ is floating on the surface of a liquid. Its position at any instant can be determined with a probable error of $10^{-6} \mathrm{~m}$. Calculate the uncertainty in the value of its velocity.
3. Normalize the wave function $\mathrm{e}^{-\mathrm{x}}$, for $0<\mathrm{x}<1$.
4. Calculate the first three permitted energy levels in eV , for an electron in a cubical box of side $3 \AA$.
5. An electron with energy 10 eV moves towards a potential step of height 4 eV . Find the coefficients of transmission and reflection of the electron when it strikes the potential step.
6. The energy of a linear harmonic oscillator in its second excited state is 1.5 eV . Determine its frequency of vibration.
7. Show that the momentum operator $(\hbar / i) \partial / \partial x$ is Hermitian.
SECTION - C

ANSWER ANY THREE QUESTIONS:

$$
(3 \times 15=45)
$$

8. Obtain an expression for de Broglie wavelength. Describe Davisson and Germer experiment and discuss its results.
9. State and explain the uncertainty principle. Discuss any two consequences of the uncertainty principle.

PH/MC/QM64

10. A particle in a 1-D box is restrained by reflecting walls at $x=0$ and $x=L$. Solve the Schrödinger's equation for this system and obtain the energy eigen value and eigen function. Indicate graphically the first three wave functions.
11. Arrive at the expression for the tunneling probability for a particle through a finite potential barrier. Give any one example of barrier penetration by particles.
12. Obtain the commutation relations between the following pairs of operators.
(i) momentum and free particle Hamiltonian operator (ii) L^{2} and L_{x}
(iii) L_{+}and L_{-}.

$$
\times \times \times \times \times \times \times
$$

