STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086.

(For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE: PH/MC/QM64

B.Sc. DEGREE EXAMINATION APRIL 2009

BRANCH III - PHYSICS SIXTH SEMESTER

		REG	G. No
	RSE : MAJOR – C CR : QUANTUM 30 MINS.		MAX. MARKS : 30
		SECTION – A	
	TO BE ANSWERE	D IN THE QUESTION PAI	PER ITSELF
	ANSWER ALL QUESTIC	ONS:	$(30 \times 1 = 30)$
I	CHOOSE THE CORREC	T ANSWER:	
1.	Anya) charged	particle has wave natural b) moving	re associated with it.
2.	If the momentum of two parawavelengths will be in the analy 2:1	articles are in the ratio 1: 0.5, ratio b) 1:2	, their de Broglie c) 4:1
3.	The product of uncertaintie greater than $\hbar/2$	es of energy and	_
	a) position	b) angle	c) time
4.	A wave function is said to a) $\int \psi * \psi d\tau = 0$	be normalized if b) $\int \psi * \psi d\tau = 1$	c) $\int \psi * \psi d\tau = \infty$
5.	Which of the following is a a) y^2	an admissible wave function? b) $e^{ x }$	c) A $\sin \alpha x$
6.	The product of twoa) singular	Hermitian op b) non commuting	
7.	Unitary operator is the one a) itself	for which its adjoint is equa b) its inverse	1 to c) its complex conjugate
8.	The probability of a particl a) decreases with mass	e tunneling through a potent b) increases with mass	ial barrier c) independent of its mass

9.	The binding energy of an a) positive	electron must be b) negative	c) zero		
10.	The spacing between the a) $h\nu$	energy levels of a linear h b) ½ h <i>v</i>	narmonic oscillator is c) zero		
11.	The zero point energy in a) 2.07 x 10 ⁻¹⁵		period of 1 second is c) 2.07 x 10 ⁻¹⁵		
12.	Aa) particle in a box	is an example of a spl b) LHO	herically symmetric system. c) rigid rotator		
13.	The n th energy level of Hy a) n	vdrogen atom is b) n ²	fold degenerate. c) 2n + 1		
14.	Eigen functions of Hermitian operators belonging to different eigen values are				
	a) normalized	b) orthogonal	c) orthonormal		
15.	$\begin{bmatrix} L_x, L_y \end{bmatrix} = $ a) $i\hbar$	 b) 0	c) $i\hbar L_z$		
II	STATE WHETHER TRUE OR FALSE:				
16.	Hamiltonian operator is a Hermitian operator.				
17.	Planck's constant is a number without dimension.				
18.	The expectation value of momentum is given by $-i\hbar\partial\psi/\partial x$				
19.	There is no reflection of a particle approaching a potential step with E>Vo.				
20.	$[x, p_x] = [p_x, x]$				
III	FILL IN THE BLANKS:				
21.	A free particle moves in a region of constant				
22.	A wave has phase velocity but a wave packet has velocity.				
23.	The average result of a number of measurements made on a system is known as				
24.	Quantum states with the same energy are said to be				
25.	The eigen values of the parity operator are .				

IV	ANSWER THE FOLLOWING:		
26.	What are canonically conjugate variables?		
27.	Give the conditions for a set of functions to be orthogonal.		
28.	Comment on the zero point energy of a linear harmonic oscillator.		
29.	Write down Schrödinger equation for a linear harmonic oscillator.		

30. What are ladder operators?

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086.

(For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE: PH/MC/QM64

B.Sc. DEGREE EXAMINATION APRIL 2009

BRANCH III - PHYSICS SIXTH SEMESTER

COURSE : MAJOR – CORE

PAPER : QUANTUM MECHANICS

TIME : **2** ½ **HOURS** MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 1. The average kinetic energy of a thermal neutron is (3/2)kT. Determine the deBroglie wavelength associated with the neutron in thermal equilibrium at 350K. (Boltzmann constant = 1.38×10^{-23} J/Kelvin).
- 2. An oil drop of mass $2x10^{-12}$ g is floating on the surface of a liquid. Its position at any instant can be determined with a probable error of 10^{-6} m. Calculate the uncertainty in the value of its velocity.
- 3. Normalize the wave function e^{-x} , for 0 < x < 1.
- 4. Calculate the first three permitted energy levels in eV, for an electron in a cubical box of side 3Å.
- 5. An electron with energy 10 eV moves towards a potential step of height 4 eV. Find the coefficients of transmission and reflection of the electron when it strikes the potential step.
- 6. The energy of a linear harmonic oscillator in its second excited state is 1.5 eV. Determine its frequency of vibration.
- 7. Show that the momentum operator $(\frac{\hbar}{i})\partial_{\partial x}$ is Hermitian.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 15 = 45)$

- 8. Obtain an expression for de Broglie wavelength. Describe Davisson and Germer experiment and discuss its results.
- 9. State and explain the uncertainty principle. Discuss any two consequences of the uncertainty principle.

- 10. A particle in a 1-D box is restrained by reflecting walls at x = 0 and x = L. Solve the Schrödinger's equation for this system and obtain the energy eigen value and eigen function. Indicate graphically the first three wave functions.
- 11. Arrive at the expression for the tunneling probability for a particle through a finite potential barrier. Give any one example of barrier penetration by particles.
- 12. Obtain the commutation relations between the following pairs of operators.
 - (i) momentum and free particle Hamiltonian operator (ii) L^2 and L_x
 - (iii) L_+ and L_- .

