STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086.

(For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE: PH/MC/OS44

REG. No._____

B.Sc. DEGREE EXAMINATION APRIL 2009

BRANCH III - PHYSICS FOURTH SEMESTER

PA	MAJOR - CORE APER : OPTICS AND SPECTROSCOPY ME : 30 MINS.	MAX. MARKS : 30		
	TO BE ANSWERED IN THE QUESTION PAR	PER ITSELF		
SECTION – A				
	ANSWER ALL QUESTIONS:	$(30 \times 1 = 30)$		
Ι	CHOOSE THE CORRECT ANSWER:			
1.	For a thin lens the nodal points coincide with a) Optic axis b) Optic Centre c) Nodal Planes			
2.	If half of the body of a lens is covered with black paper, the lens will a) disappear b) have its intensity reduced to half c) have			
3.	Spherical aberration of a lens may be reduced by designing deviation of rays is a) equal at both the surfaces b) minimum	the lens so that the c) maximum		
4.	When white light is used in biprism experiment, centre of fa) dark b) bright c) achromatic	ringe system is		
5.	Colours of thin films result from a) interference of light b) absorption of light	c) dispersion of light		
6.	Interference of two light waves can be observed with the hea) spectrometer b) Michelson's interferometer c) pho	lp of a otometer		
7.	Interference and diffraction of light support the a) wave nature of light b) quantum nature of light c) tra	ansverse nature of light		
8.	A diffraction pattern is obtained using a beam of red light. It by the blue light, then a)bands will disappear b) no change c) bands will become	-		
9.	The useful magnifying power of a telescope should be a) about 200 b) 20 c) 10			

PH/MC/OS44		
10. Polarisation of light waves afford a convincing evidence of a) Transverse nature b) quantum nature c) dual nature.		
11. Light transmitted by a single Nicol crystal is a) plane polarised b) un polarised c) circularly polarised		
12. The property of certain substances by virtue of which they rotate the plane of polarisation of a plane polarised light is known asa) optical activityb) specific gravityc) Malus law		
13. Ultra-violet radiation mercury lamps are made of quartz, so that the lamp may a) become robust b) look beautiful c) not become very hot		
14. Fraunhofer lines are found in the spectrum of the sun, their characteristic beinga) dark linesb) bright linesc) dark bands		
15. In Raman scattering when an incident photon is absorbed by a molecule which is already in the excited state, then on de-excitement of the said molecule, the wavelength of the emitted photon will be the wavelength of the incident photon. a) greater than b) less than c) same		
II STATE WHETHER TRUE OR FALSE:		
16. The focal length of a convex lens placed in water remains same as in air.		
17. In Young's double slit experiment, if the width of the slits is gradually increased then fringes get blurred.		
18. The thickness of diffraction fringes in a given pattern is always same.		
19. According to Brewster's law $\mu = \tan i_{p.}$		
20. The heating effect of these radiations is used in measuring the wavelength of the Infrared radiations.		
III FILL IN THE BLANKS:		
1. A convex lens of focal length 40cm is in contact with a concave lens of focal length 25 cm. the power of combination is		
22. In Fresnel's biprism experiments, the number of fringes obtained with white light compared to monochromatic light source is		
3. The total length of a zone plate in terms of radii r_n , order of zone n and wavelength of light λ is given by		
24. Light is incident on a surface at a polarizing angle of 40°. The angle of incidence is		

25.	was awarded Nobel Prize for Raman effect.
IV	ANSWER BRIEFLY:
26. 1	Define chromatic aberration.
27.	Define Interference.
28.	Define resolving power of grating.
29	Specific rotation of sugar is 66°. 20 % of impure sugar solution is taken in a sample
tube	e of length 20 cm and the optical rotation is found to be 23.5°. What is the centage of purity sugar?
30.	The danger signals are red while the eye is more sensitive to yellow. Why?
20.	The sanger again are real time the eye is more sensitive to yellow. Why.

XXXXXXX

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086.

(For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE: PH/MC/OS44

B.Sc. DEGREE EXAMINATION APRIL 2009

BRANCH III - PHYSICS FOURTH SEMESTER

COURSE : MAJOR – CORE

PAPER : **OPTICS AND SPECTROSCOPY**

TIME : 2 ½ HOURS MAX. MARKS : 70

SECTION - B

Answers any **five** of the following:

 $(5 \times 5 = 25)$

- 1. The focal length of a lens in air is 10 cm. What will be its focal length if air is replaced by water?
- 2. A soap film of refractive index 1.33 is illuminated with light of different wavelength at an angle of 45°. There is complete destructive interference for $\lambda = 5890 \text{ A}^{\circ}$. Find the thickness of the film.
- 3. Two coherent sources of monochromatic light of wavelength 6000 A° produce an interference pattern on a screen kept at a distance of 1 m from them. The distance between two consecutive bright fringes on the screen is 0.5 mm. Find the distance between the two coherent sources.
- 4. A single slit of width 0.14 mm is illuminated normally by monochromatic light and diffraction bands are observed on a screen 2 m away. If the centre of the second dark band is 1.6 cm from the middle of the central bright band, deduce the wavelength of light used.
- 5. Light is incident normally on a grating of total ruled width 5 x 10^{-3} m with 2500 lines in all. Calculate the angular separation of the two sodium lines in the first order spectrum can they be seen distinctly?
- 6. Calculate the specific rotation if the plane of polarisation is turned through 26.4° traversing 20 cm length of 20 % sugar solution.
- 7. Nuclear Magnetic resonance in water is due to the protons of hydrogen. Find the field necessary to produce NMR at 69 MHZ.

SECTION - C

Answer any **Three** of the following:

 $(3 \times 15 = 45)$

- 1. a) Explain the construction and working of a Huygen's eyepiece; find its cardinal points.
 - b) Compare it with Huygen's eyepiece.

- 2. a) Give the theory of Newton's rings.
 - b) Describe an experiment to determine wavelength of light using Newton's rings.
- 3. a) What is zone plate and how is it made? Explain how a zone plate acts like a convergent lens having multiple foci. Derive an expression for its focal length.
 - b) explain the difference between zone plate and a convex lens.
- 4. a) How can elliptically and circularly polarized light be produce.
 - b) How can elliptically and circularly polarized light be detected.
- 5. a) Explain the concept of resonance.
 - b) Discuss in detail the Electron Spin Resonance spectroscopy and give any one of the application.

