STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086.
(For candidates admitted during the academic year 2004-05 \& thereafter)
SUBJECT CODE : PH/MC/AN64

B.Sc. DEGREE EXAMINATION APRIL 2009

BRANCH III - PHYSICS SIXTH SEMESTER

REG. No. \qquad
COURSE : MAJOR - CORE PAPER : ATOMIC AND NUCLEAR PHYSICS TIME : $\mathbf{3 0}$ MINS. MAX. MARKS : 30

SECTION - A

TO BE ANSWERED IN THE QUESTION PAPER ITSELF

ANSWER ALL QUESTIONS:
 $(30 \times 1=30)$

I CHOOSE THE CORRECT ANSWER:

1. The photoelectric effect can be explained on the basis of
a) corpuscular theory of light
b) wave theory of light
c) electromagnetic theory of light
d) quantum theory of light
2. The wave function of a photoelectric material is 3.3 eV . The threshold frequency will be equal to
a) $8 \times 10^{14} \mathrm{~Hz}$
b) $8 \times 10^{10} \mathrm{~Hz}$
c) $5 \times 10^{20} \mathrm{~Hz}$
d) $4 \times 10^{14} \mathrm{~Hz}$
3. X Ray is
a) phenomenon of conversion of kinetic energy inter radiation
b) conversion of momentum
c) conversion of energy to mass
d) principle of conservation of charge.
4. The elliptical orbits of electron in the atom were proposed by
a) J J Thomson
b) Bohr
c) Sommerfeld
d) de Broglie
5. The first excitation potential energy or the minimum energy required to excite atom from the ground state of hydrogen atom is
a) 13.6 eV
b) 10.2 eV
c) 3.4 eV
d) 1.89 eV
6. In anomalous Zeeman effect the longer wavelength component ${ }^{2} P x_{2} \rightarrow{ }^{2} S v_{2}$ splits into
a) 6 lines
b) 4 lines
c) 2 lines
d) 8 lines
7. The nuclear fission was explained by
a) liquid drop model
b) shell model
c) collective model
d) radioactive model
8. Sun releases energy by the process of
a) spontaneous combustion
b) nuclear fusion
c) nuclear fission
d) electrical incandescence
9. The mass defect of a certain nucleus is found to be 0.03 amu . Its binding energy is
a) 24.93 eV
b) 27.93 KeV
c) 27.93 MeV
d) 27.93 GeV
10. The boron - steel rods in nuclear reactor work as
a) moderator
b) controller
c) coolant
d) shield
11. The fission of ${ }_{92} \mathrm{U}^{235}$ is caused by
a) α-particles
b) β particles
c) fast neutrons
d) slow neutrons
12. Bi^{210} has half life of 5 days. The time taken for seven eighth of the sample to decay is
a) 3.4 days
b) 10 days
c) 15 days
d) 20 days
13. Cyclotrons is used to accelerate
a) electrons only
b) positive ions only
c) both positive ions and electrons
d) neutrons only
14. Nuclear particles are bound in nucleus by
a) gravitational forces
b) Masonic forces
c) electrostatic forces
d) electromagnetic forces
15. Strange particles are
a) Baryons and leptons
b) photons
c) leptons and mesons
d) neutrons and baryons

II FILL IN THE BLANKS:
16. The stopping potential of a metal surface in independent of \qquad .
17. The difference in energy of the electrons having spin parallel and antiparallel to the magnetic field B is given by ΔU_{m} \qquad
18. The empirical formula for nuclear radius is \qquad
19. In β decay the neutron number \qquad
20. In elementary particle physics, the mirror symmetry is known as \qquad .

III STATE TRUE OR FALSE:
21. When $\ell=1$; it is called s orbit
22. Moseley's law is $\sqrt{r}=a(z-b)$

23．The magic numbers are $2,4,16,32,82.125$ ．
24．Cyclotron is used to accelerate negatively charged particles．
25．Fermions have half－integral spin．
IV ANSWER BRIEFLY：
26．Write Einstein＇s photoelectric equations．

27．What is Lande g factor？

28．Define critical mass．

29．Write the relation connecting of half－life and mean life of a radioactive substance．

30．What is the principle of G．M．counter．

$$
\text { 米米 } ⿻ 丷 木 * * *
$$

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086.
(For candidates admitted during the academic year 2004-05 \& thereafter)
SUBJECT CODE : PH/MC/AN64

B.Sc. DEGREE EXAMINATION APRIL 2009
 BRANCH III - PHYSICS SIXTH SEMESTER
 PAPER : ATOMIC AND NUCLEAR PHYSICS
 MAX. MARKS : 70

COURSE : MAJOR - CORE
TIME : 2112 HOURS

SECTION - B

ANSWER ALL QUESTIONS:
$(5 \times 5=25)$

1. A photo electric surface has a work function of 4 eV . What is the maximum velocity of photo electrons emitted by light of frequency $10{ }^{15} \mathrm{Hertz}$ incident on the surface.
2. A singly charged positive ion is accelerated through a potential difference of 1 kv and the ion passes through a uniform magnetic field of $\mathrm{B}=0.2 \mathrm{~T}$ and consequently gets deflected through a circular path of radius 0.1 m . Find the mass number of the ion.
3. The experimental value of Bohr magneton is $9.21 \times 10^{-24} \mathrm{ST}$ units and Plank's constant $\hbar=6.6 \times 10^{-34} \mathrm{~J}-s$. Calculate the value of $\frac{e}{m}$ of electron.
4. Estimate the energy released when two deutron nuclei fuse together to form H^{2} and He^{4} are 1.1 and 7 MeV respectively.
5. Radon, the disintegration product of radium is in equilibrium with 1 gram of radium. Find the mass of radon. Half life of $\mathrm{Ra}^{226}=1590$ years, $\mathrm{Rr}^{222}=3.82$ days.
6. If X-rays of wavelengths 0.5 A are detected at an angle of 5° in the first order, what is the spacing between the adjacent planes of the crystal? At what angle will the second order maximum occurs?
7. Calculate the wavelength separation between two component lines which are observed in the normal Zeeman effect. The magnetic field used is 0.4 T ; the specific charge $=1.76 \times 10^{11} \mathrm{c} / \mathrm{kg}$ and $\lambda=6000 \mathrm{~A}^{\circ}$.

SECTION - C

ANSWER ANY THREE QUESTIONS:
8. Discuss Thomson's parabola method of determining e/m of positive rays.
9. Define excitation and ionization potential. Describe Frank and Hertz experiment for the determination of critical potentials.
10. Explain the phenomenon of nuclear fission. Explain it on the basis of liquid drop model.
11. State the laws of radio active disintegration. Obtain expression for half life and mean life of a radio active substances.
12. Describe the construction, working and theory of cyclotron. What are its limitations?

$$
\times \times \times \times \times \times
$$

