M. Sc. DEGREE EXAMINATION, NOVEMBER 2007
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : ELECTIVES
PAPER : NUMBER THEORY AND CRYPTOGRAPHY
TIME : 3 HOURS
MAX. MARKS : 100

SECTION - A
$(5 \times 8=40)$

ANSWER ANY FIVE QUESTIONS

1. Estimate the time required to convert a k-bit integer to its representation in base 10 .
2. a) Show that if p is prime and a is any integer not divisible by p and if

$$
n \equiv m \bmod (p-1), \text { then } a^{n} \equiv a^{m}(\bmod p)
$$

b) Find the last base 7 digit in $2^{1000000}$.
3. Show that the order of any $a \in F_{q} *$ divides $q-1$.
4. Show that if ' f ' is prime, then the number of monic irreducible polynomial of degree f over F_{p} is $\frac{p^{f}-p}{f}$.
5. Solve the system of simultaneous congruences
$2 x+3 y \equiv 1 \bmod 26$
$7 x+8 y \equiv 2 \bmod 26$.
6. You intercept the message '!IWGVIEX!ZRADRYD', which was sent using a linear enciphering transformation of digraph vectors in a 29 letter alphabet, in which $\mathrm{A}-\mathrm{Z}$ have numerical equivalents $0-25$, blank $=26, ?=27,!=28$. You know that last five letters of plain text are the sender's signature 'MARIA'. Find the deciphering matrix and read the message.
7. Explain briefly the method of sending a signature in RSA.

SECTION - B

$(3 \times 20=60)$

ANSWER ANY THREE QUESTIONS

8. a) Show that the time estimate to find the g.c.d (a,b) by Euclidean algorithm $o\left(\log ^{3} a\right)$.
b) Show that the highest power of a prime p which exactly divides n ! is equal to $\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\ldots+\left[\frac{n}{p^{k-1}}\right]$ where $\left[\frac{n}{p^{k}}\right]=0$.
9. a) State and prove Chinese Remainder theorem.
b) If g.c.d $(a, m)=1$, then show that $a^{\phi(m)} \equiv 1(\bmod m)$.
10. a) State and prove the quadratic reciprocity law for the Jacobi Symbol.
b) Show that, if α is any element of F_{q}, then the conjugates of α over F_{p} (the elements of F_{q} which satisfy the same monic irreducible polynomial with coefficients in F_{p}) are the elements $\sigma^{j}(\alpha)=\alpha^{p^{j}}$.
11. In order to increase the difficulty of breaking your cryptosystem you decide to encipher a digraph-vector in the 26 -letter alphabet by first applying the matrix $\left(\begin{array}{ll}3 & 11 \\ 4 & 15\end{array}\right)$, working modulo 26, and then applying the matrix $\left(\begin{array}{cc}10 & 15 \\ 5 & 9\end{array}\right)$, working modulo 29. thus, your plain text are 26 - letter alphabet, your cipher texts will be in the 29-leeter alphabet, $\mathrm{A}-\mathrm{Z} \rightarrow 0-25$, blank $=26, ?=27,!=28$.
a) Encipher the message 'SEND'.
b) Describe how to decipher a cipher text by applying 2 matrices in succession and decipher 'ZMOY'. (HINT:- $\mathrm{C}=\mathrm{A}_{2} \mathrm{~A}_{1} \mathrm{P}$)
12. a) Describe the Diffie - Hellman Key exchange system with an example.
b) Describe the El-Gamal cryptesystem.
