STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2006 – 07 & thereafter)

SUBJECT CODE: MT/PE/MM14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2007 BIOINFORMATICS FIRST SEMESTER

COURSE : ELECTIVES

PAPER : MATHEMATICAL METHODS

TIME : 3 HOURS MAX. MARKS: 100

ANSWER ANY SIX QUESTIONS ONLY:

- 1. a) Out of 600 boys in a college, 168 play cricket, 180 play hockey, 252 play foot ball, 48 play both foot-ball and hockey, 60 play cricket and foot-ball, 30 play cricket and hockey, and 18 play all the three. How many do not play any game and how many play one game?
 - b) Define Equivalence relation and onto function.
 - c) Find the numbers in A.P whose sum is 24 and whose product is 440.

(7+4+6)

- 2. a) Find the sum to n terms of the series .7 + .77 + .777 + ...
 - b) Sum the series (i) $\frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + ... \infty$

(ii)
$$\frac{1}{1.3} + \frac{1}{2.5} + \frac{1}{3.7} + \dots \infty$$

(6+6+5)

3. a) If $A = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$ verify that $A^2 - 7A + I = 0$ where I stands for unit matrix and

hence find A^{-1} .

b) Using Matrices solve the equation

$$x + y + z = 6$$

$$x + 2y + 3z = 14 \tag{7+10}$$

-x + y - z = -2

- 4. a) Differentiate the following with respect to x.
 - (i) $\log(\cos x)$
- (ii) $(\sin x)^x$
- b) If $x = 2\sin t$, $y = \cos 2t$ find $\frac{dy}{dx}$.

c) If
$$y = x^{x^{x}}$$
 find $\frac{dy}{dx}$.

(6+6+5)

- 5. a) Show that the function $2x^3 + 3x^2 12x + 7$ is positive when x > 1.
 - b) Find the maxima and minima of the function $x^5 5x^4 + 5x^3 + 10$.
 - c) Find the equation of the tangent and normal to the curve $y = \frac{6x}{x^2 1}$ at the point (2,4).

(5+6+6)

- 6. a) If $xy = ae^x + be^{-x}$ prove that $xy_2 + 2y_1 xy = 0$.
 - b) If $u = \frac{xy}{x+y}$ show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$.
 - c) If $u = \tan^{-1} \frac{x^3 + y^3}{x y}$ prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$.

(6+5+6)

- 7. Integrate (i) $\frac{\sin(\log x)}{x}$
 - $(ii) \ \frac{1}{x^2 + 2x + 5}$
 - $(iii) \frac{1}{(x-1)(x-2)}$

(5+6+6)

- 8. Solve the following equations:
 - (i) $x\sqrt{1+y^2} + y\sqrt{1+x^2} \frac{dy}{dx} = 0$.
 - (ii) $(e^x + 1)y dx + (y+1) dy = 0$.

(iii)
$$(D^2 - 4D + 3)y = 0$$
 (6+6+5)

- 9. a) Solve $(D^2 + 1)y = x \cos x$
 - b) Express $f(x) = \frac{1}{2}(\pi x)$ as a Fourier series in the interval 0 to 2π .

(7+10)

- 10. a) Find the number of permutations of six objects taken three at a time.
 - b) Find the number of permutations that can be formed from all the letters of the word Baseball.
 - c) There are twelve points A,B,... in a given plane no three on the same line
 - (i) How many triangles are determined by the points?
 - (ii) How many triangles contains the point A as a vertex?
 - d) Prove that $\binom{6}{0} + \binom{6}{1} + \binom{6}{2} + \dots + \binom{6}{6} = 2^6$ (3+5+5+4)