SUBJECT CODE : MT/PC/GT14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2007
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE	$:$ MAJOR - CORE	
PAPER	$:$ GRAPH THEORY	
TIME	$: \mathbf{3}$ HOURS	MAX. MARKS : $\mathbf{1 0 0}$

SECTION - A

($5 \times 8=40$)

ANSWER ANY FIVE QUESTIONS

1. a) Define: Graph Isomorphism. Give an example
b) Prove that in a graph the number of vertices of odd degree is even.
2. a) Prove that a graph is bipartite if and only if it contains no odd cycles.
b) Show that if $\delta(G) \geq 2$, then G contains a cycle.
3. a) Define a spanning tree of a graph G and illustrate with an example.
b) A vertex v of a tree G is a cut vertex of G if and only if $d(v)>1$. Prove.
4. a) Define the connectivity κ and edge connectivity κ^{\prime} of a graph G. Draw a graph for which $\kappa<\kappa^{\prime}$.
b) Show that if G is k - edge connected then $\varepsilon \geq \frac{k \gamma}{2}$.
5. a) Give an example of a graph that is Eulerian but not Hamiltonian
b) If G is a simple graph with $\gamma \geq 3$ and $\delta \geq \frac{\gamma}{2}$, then G is Hamiltonian. Prove.
6. Prove that $\alpha+\beta=\gamma$ with usual notations.
7. Define a planar graph and prove that K_{5} is non-planar.

SECTION - B

$(3 \times 20=60)$

ANSWER ANY THREE QUESTIONS

8. a) A graph G with γ vertices and \mathcal{E} edges has t vertices of degree m and all other vertices of degree n. Show that $(m-n) t+\gamma_{n}=2 \varepsilon$.
b) If G is a tree, prove that any two vertices are connected by a unique path.
c) If G be a graph with γ vertices and $\gamma-1$ edges. Show that the following are equivalent.
(i) G is connected
(ii) G is acyclic
(iii) G is a tree
9. a) With usual notations prove that $K \leq K^{\prime} \leq \delta$.
b) State and prove a necessary and sufficient condition for a graph to be Eulerian.
10. a) for any graph G with 6 vertices prove that G or \bar{G} contains a triangle.
b) show that for all k and $l, r(k, l)=r(l, k)$.
c) State and prove Ramsey's theorem.
11. a) State and prove Brooke's theorem.
b) Prove that every critical graph is a block.
12. a) Prove that every planar graph is 5 -colourable.
b) Define dual of a graph. Draw the dual of the following graph.

