STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

 (For candidates admitted during the academic year 2004-05 \& thereafter)SUBJECT CODE : MT/PC/AL14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2007
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

```
COURSE : MAJOR - CORE
PAPER : ALGEBRA - PART - I
TIME : 3 HOURS
```

SECTION - A

MAX. MARKS : 100
$(5 \times 8=40)$

ANSWER ANY FIVE QUESTIONS

1. If G is a finite group and if $a \in G$, prove that the number of elements conjugate to a in G is equal to the index of the normalizer of a in G.
2. Show that no group of order 30 is simple.
3. If p is a prime number of the form $4 n+1$, prove that $p=a^{2}+b^{2}$, for some integers a, b.
4. State and prove the Eisenstein Criterion about the irreducibility of a polynomial with integer coefficients.
5. If V is n-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F , prove that T satisfies a polynomial of degree n over F .
6. If R is an Euclidean ring, prove that any two elements $a, b \in R$ have a greatest common divisor of the form $\lambda a+\mu b$, for some $\lambda, \mu \in R$.
7. a) Define a nilpotent linear transformation.
b) show that a nilpotent linear transformation does not admit any non-zero eigen value.

> SECTION - B

ANSWER ANY THREE QUESTIONS

8. Prove that every finite abelian group is the direct product of cyclic groups.
9. a) Prove that $J(i)$, the ring of Gaussian integers, is a Euclidean ring.
b) Show that any ideal in a Euclidean ring is a principal ideal.
10. a) If p is prime, prove that the polynomial $1+x+x^{2}+\ldots+x^{p-1}$ is irreducible over the field of rational numbers.
b) If R is unique factorization domain and if $\mathrm{p}(\mathrm{x})$ is a primitive polynomial in $\mathrm{R}[\mathrm{X}]$, prove that $\mathrm{p}(\mathrm{x})$ can be factored in a unique way as the product of irreducible elements in R[x].
11. Prove that two nilpotent linear transformation are similar if and only if they have the same invariants.
12. If $T \in A(V)$ has all its characteristic roots in F , then prove that there exists a basis of V in which the matrix of T is triangular.
