STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086. (For candidates admitted during the academic year 2008-09)

SUBJECT CODE: PH/MC/MP34

REG. No._____

B.Sc. DEGREE EXAMINATION NOVEMBER 2009 BRANCH III - PHYSICS THIRD SEMESTER

COURSE PAPER TIME	: 1	MAJOR – CORE MATHEMATICAL 1 80 MINS.	PHYSICS	MAX. MARKS: 30
SECTION – A				
TO BE ANSWERED IN THE QUESTION PAPER ITSELF				
ANSWER ALL QUESTIONS:				$(30 \times 1 = 30)$
I Cl	HOOSE THI	E CORRECT ANSW	ER:	
1.		is said to be solenoid: b) $\nabla . \vec{A} = 0$		ant d) None of these
2.	If $\vec{r} = \vec{i}x + \vec{j}$ a) 1	$\vec{k}y + \vec{k}z$, then $\nabla \cdot \vec{r}$ is equal to \vec{r}	qual to c) 3	d) 4
3.	The area of a) $ \vec{A} \times \vec{B} $	a parallelogram with s b) $\vec{A}.\vec{B}$	sides \vec{A} and \vec{B} is c) $\vec{A} + \vec{B}$	d) $\left \vec{A} \right \left \vec{B} \right $
4.	The value o perpendicul a) 1	f 'a' for which $\vec{A} = 2\vec{i}$ ar is b) 2	$\vec{i} + a\vec{j} + \vec{k}$ and $\vec{B} = 4\vec{i}$	$-2\vec{j}-2\vec{k}$ are d) 4
5.	The angle b a) 41°	etween $\vec{A} = 2\vec{i} + 2\vec{j} - 60^{\circ}$	\vec{k} and $\vec{B} = 6\vec{i} - 3\vec{j} + 2\vec{k}$	
6.	Laplace's ea a) $\nabla \times \nabla \phi =$	=	0 c) $\nabla . (\nabla \times \vec{A})$	$= 0 d) \nabla \times (\nabla \times \vec{A}) = 0$
7.	If $\vec{R} = (\sin t)$	$(\vec{i} + (\cos t)\vec{j} + t\vec{k}$, then	$\left \frac{d\vec{R}}{dt} \right $ is	
	a) 1	b) $\sqrt{2}$	c) $\sqrt{3}$	d) 2
8.	The angle b a) 30°	etween the vector \vec{A} = b) 65°	$3\vec{i} - 6\vec{j} + 2\vec{k}$ and the c) 17°	

If \vec{F} is a conservative force-field, then 9.

a)
$$\nabla \times \vec{F} = 0$$

b)
$$\nabla \cdot \vec{F} = 0$$

c)
$$\nabla . \vec{F} = a$$
 constant

d) None of these

The area of the ellipse $x = a\cos\theta$, $y = b\sin\theta$ is 10.

a)
$$\frac{1}{2}(\pi ab)$$
 b) πab

c)
$$ab\sin\theta$$

d) $ab\cos\theta$

The solution of the equation $\frac{dR}{dt} = R^2 t^2$ is [Given R = 1 when t = 1] 11.

a)
$$R = \frac{1}{4 - t^3}$$

a)
$$R = \frac{1}{4 - t^3}$$
 b) $R = \frac{3}{4 - t^3}$ c) $R = \frac{4}{3 - t^3}$ d) $R = \frac{1}{3 - t^3}$

c)
$$R = \frac{4}{3-t^3}$$

d)
$$R = \frac{1}{3 - t^3}$$

The value of $\left(\frac{1}{D-2}\right)e^{4x}$ is $\left\{D = \frac{d}{dx}\right\}$ 12.

a)
$$\frac{1}{4}e^{2x}$$
 b) $\frac{1}{2}e^{4x}$ c) e^{2x}

b)
$$\frac{1}{2}e^{4x}$$

c)
$$e^{2x}$$

d)
$$e^{4x}$$

The value of $\frac{1}{2}$ is 13.

If $P_n(x)$ is the Legendre polynomial of degree 'n', then the value of $P_1(x)$ is 14.

15. The expression for $P_2(x)$ is

b)
$$x^2 - 1$$

c)
$$\frac{1}{2}(x^2-1)$$

b)
$$x^2-1$$
 c) $\frac{1}{2}(x^2-1)$ d) $\frac{1}{2}(3x^2-1)$

II FILL IN THE BLANKS:

A particle is acted on by a force $\vec{F} = 2\vec{\imath} - \vec{\jmath} - \vec{k}$. If the displacement, 16. $\vec{S} = 3\vec{\imath} + 2\vec{\jmath} - 5\vec{k}$ then the work done is ______.

If $\vec{A} = \vec{j}$ and $\vec{B} = 2\vec{i} - 3\vec{j} + \vec{k}$, then $\vec{A} \cdot \vec{B}$ is _____ 17.

The volume of a parallelo piped with sides $\vec{A} = 3\vec{\imath} - \vec{j}$, $\vec{B} = \vec{j} + 2\vec{k}$, 18. $\vec{C} = \vec{\iota} + 5\vec{I} + 4\vec{k}$ is _____

19. A necessary and sufficient condition that Mdx + Ndy = 0 be exact is

The volume of $\boxed{0}$ is _____ 20.

III STATE WHETHER TRUE OR FALSE:

- 21. For every scalar ϕ , $Curl(grad\phi) = 0$.
- 22. Gauss' divergence theorem relates Line Integral with volume Integral.
- 23. The solution of the equation $\left(\frac{dy}{dx}\right) = 2y$ is $y = ce^x$.
- 24. $\beta(m,n) = \beta(n,m).$
- 25. $\sqrt{\frac{3}{2}} = 0.886$.

IV ANSWER BRIEFLY:

- 26. Prove that $\overline{A} \cdot (\overline{A} \times \overline{C}) = 0$.
- 27. State Green's theorem in a plane.
- 28. Write down Bernoulli's equation.
- 29. Enumerate the properties of Gamma function.
- 30. Plot the graph of $P_1(x)$.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2008-09)

SUBJECT CODE: PH/MC/MP34

B.Sc. DEGREE EXAMINATION NOVEMBER 2009 BRANCH III - PHYSICS THIRD SEMESTER

COURSE : MAJOR - CORE

PAPER : MATHEMATICAL PHYSICS

TIME : 2 ½ HOURS MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 1. A particle moves so that its position vector, is given by $\vec{r} = \vec{i} \cos wt + \vec{j} \sin wt$ where 'w' is a constant. If 'v' is the velocity of the particle, find $\vec{r} \times \vec{v}$.
- 2. If $\phi(x, y, z) = 3x^2y y^3z^2$, find $\nabla \phi$ at the point (1, -2, -1).
- 3. Find a unit normal to the surface $x^2y + 2xz = 4$ at the point (2,-2,3).
- 4. If $\vec{F} = \nabla \phi$, then show that the work done in moving a particle from $P_1 = (x_1, y_1, z_1)$ in this field to another point $P_2 = (x_2, y_2, z_2)$ is independent of the path joining the points.
- 5. Find the general solution of $(4x + xy^2)dx + (y + x^2y)dy = 0$.
- 6. Solve: 2y'' 5y' + 2y = 0.
- 7. Prove that $\beta(m,n) = \frac{\overline{m} \quad \overline{n}}{\overline{m+n}}$.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(15 \times 3 = 45)$

- 8. a) Show that the force field \vec{F} defined by $\vec{F} = (y^2 z^3 6xz^2)\vec{i} + 2xyz^3 \vec{j} + (3xy^2 z^2 6x^2 z)\vec{k}$ is a conservative force field.
 - b) Find the work done by the force field \vec{F} in moving a particle form the point A(-2,1,3) to B(1,-2,-1).
- 9. a) State and prove Gauss' Divergence theorem.
 - b) Evaluate $\iint_{c} (\vec{r} \cdot \vec{n}) ds$ where 's' is a closed surface and $\vec{r} = \vec{i} x + \vec{j} y + \vec{k} z$.

10. a) Solve
$$\frac{d^2u}{dt^2} = 1 + \cos t$$
 where $u = 2$, $\frac{du}{dt} = 3$ at $t = 0$.

- b) A resistor of R = 10 ohms, an inductor of L = 2H and a battery of E volt are connected in series with a switch 's'. At t = 0, the switch is closed and the current I = 0. Find E for E of if E ovolt.
- 11. a) Derive Rodrigues' formula for $P_n(x)$.
 - b) Express $f(x) = x + 3x^2 + 1$ in terms of Legendre polynomials.
- 12. a) Evaluate using Gamma function: $I = \int_{0}^{\infty} x^{6} e^{-2x} dx$.
 - b) Plot the graph of (n) for $0 \le n < 5$.

XXXXXX