STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086. (For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE: PH/MC/EM54

REG. No._____

B.Sc. DEGREE EXAMINATION NOVEMBER 2009 BRANCH III - PHYSICS FIFTH SEMESTER

COURSE PAPER TIME	_	OR – CORE CTRICITY AND MAGNETISM INS.	MAX. MARKS : 30		
		SECTION - A			
TO BE ANSWERED IN THE QUESTION PAPER ITSELF					
ANS	WER ALL QU	ESTIONS:	$(30 \times 1 = 30)$		
I CHO	OOSE THE CO	RRECT ANSWER:			
1. The electral a) parallel		equipotential surface are b) curved lines	c) crossed lines		
2. The work done in moving a unit negative charge from infinity along the equatorial line of					
dipole is a) zero		b) positive	c) negative		
3. A parallel plates is	plate capacitor	is immersed in oil of dielectric con	stant 6. The field between the		
a) increase	ed by 6 times	b) decreased by 1/6 times	c) decreased by $1/\sqrt{6}$ times		
4. An electro		om south to north in a magnetic fie	ld acting from east to west,		
a) upward		b) downwards	c) north west		
		rallel plate capacitor of area 'A', su d to a potential 'V' is	rface charge density ' σ ', plate		
a) $\sigma A/2$	_	b) ε_{o} AV/2d	c) $\sigma^2 Ad/2\epsilon_o$		
•	law in different $= \varepsilon_0 \mu_0 \partial \mathbf{E} / \partial t$	ial form is b) $\nabla \mathbf{X} \mathbf{E} = -\partial \mathbf{B} / \partial \mathbf{t}$	c) ∇ . $\mathbf{E} = \rho / \varepsilon_o$		
7. The radiu increased		the path of a charged particle mov	ing in a magnetic field can be		
a) increasing magnetic		d b) increasing its velocity	c) increasing its charge		
	CR circuit at reso	onance the impedance is) P		
a) X _L		b) $X_L + R$	c) R		
			2		

/ 2 / PH/MC/EM54

9. The deflection in a ballistic galvar 30Ω resistor. The resistance of the	e galvanometer is				
a) 10 Ω	b) 60 Ω	c) 90 Ω			
10. The relation $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$ holds g a) only in vacuum	good b) only in dielectric	c) everywhere			
11. Two parallel long wires separate are in the opposite direction, the a) 2 $\mu_o i$ / πd	• •				
12. In an LR series ac circuit, the end a) V_o^{2} / R	ergy in one cycle is b) $V_o^2 / (R+X_L)$	c) $V_o^2 / (R^2 + X_L^2)$			
13. When a substance is placed in a rits,	magnetic field, its ability to go	et magnetized depends upon			
a) susceptibility	b) magnetic viscosity	c) permeability			
14. The source of magnetizing field a) magnetization (M)	strength (H) is b) current (I)	c) magnetic field (B)			
15. The ratio of M/H is					
a) $1/\chi_{\rm m}$	b) $\mu_r - 1$	c) 1/µ			
II FILL IN THE BLANKS:					
16. The electric dipole moment vector p points					
17. Poisson's equation is					
18. ∇ . $\mathbf{B} = 0$. It means that					
19. The magnetic field	a solenoid is uniform.				
20. High value of Q factor determine	es				
III STATE WHETHER TRUE	OR FALSE:				
21. Electric lines of force are paralle	l to equipotential surface.				
22. A ballistic galvanometer measure	es steady currents.				
23. The differential form of Ampere	s law is $\nabla X \mathbf{B} = \mu_0 \mathbf{I}$				
24. The susceptibility of paramagnet	ic material is more than one.				
25. When two capacitors are connect	ted then energy is lost.				

..3

IV ANSWER BRIEFLY:

26. Define electric polarization.

27. What is displacement current?

28. State Ampere's circuital law.

29. Define magnetic permeability.

30. What is meant by wattless current?

XXXXXXX

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE: PH/MC/EM54

B.Sc. DEGREE EXAMINATION NOVEMBER 2009 BRANCH III - PHYSICS FIFTH SEMESTER

COURSE : MAJOR - CORE

PAPER : ELECTRICITY AND MAGNETISM

TIME : 2 ½ HOURS MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 1. A sphere of 10cm diameter is suspended within a hollow sphere of 12cm diameter. If the inner sphere be charged to a potential of 15000 volts and the outer sphere be earthed, find the charge on the inner sphere.
- 2. If the earth has a surface density of charge equal to the charge of an electron, calculate the potential on the surface of the earth. Also calculate the electric field just outside the earth. ($R = 6.4 \times 10^6 \text{ m}$)
- 3. Calculate the energy stored in a parallel plate capacitor with plate area 300cm² each, plate separation 0.5cm and potential difference of 1000 volts.
- 4. A square coil of side 'd' carries a current 'i'. Calculate the magnetic induction at the centre of the coil.
- 5. The electron in hydrogen atom circulates around the nucleus in a path of radius 5.29 x 10⁻¹¹m at a frequency of 6.58 x 10¹⁵Hz. Find the magnetic induction at the centre of the orbit.
- 6. An alternating voltage of 10 volts at 100Hz is applied to a choke of inductance 5H and of resistance 200 ohms. Find the power factor of the coil and the power absorbed.
- 7. A magnetic induction (B_o) of 2 x 10⁻⁴ wbm⁻² in vacuum produces a magnetic flux (ϕ) of 2.4 x 10⁻⁸ wb in a bar of area of cross section 0.2cm². Calculate the intensity of magnetization.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 15 = 45)$

- 8. a) Explain the significance of divergence and curl of electrostatic fields.
 - b) Calculate the electric field strength due to an infinite cylinder of radius 'R' at any point distant lying i) inside ii) on the surface and iii) outside the cylinder.
- 9. a) Obtain an expression for the energy stored in a capacitor.
 - b) Derive an expression for the capacitance per unit length of a capacitor consisting of two co axial cylinders.
- 10. a) What do you mean by magnetic vector potential? Deduce an expression for it.
 - b) Find an expression for the magnetic field due to a toroid coil using Ampere's law.
- 11. a) Explain magnetic susceptibility and establish its relation with relative permeability.
 - b) Explain the boundary condition for **B** and **H**.
- 12. a) Give the theory of B.G.
 - b) Discuss the power consumption in ac resonant circuit.

××××××