STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086. (For candidates admitted during the academic year 2008-09 & thereafter)

SUBJECT CODE: PH/MC/EL14

REG. No.____

B.Sc. DEGREE EXAMINATION NOVEMBER 2009 BRANCH III - PHYSICS FIRST SEMESTER

MAJOR - CORE

ELECTRONICS I

COURSE :

PAPER

I

:

TIME	:	30 MINS.			MAX. MARKS: 30			
	то в	E ANSWEREI	SECTION D IN THE QU		ER ITSELF			
	ANSWER A	LL QUESTIO	NS:		$(30 \times 1 = 30)$			
I	CHOOSE THE CORRECT ANSWERS:							
1.	Thevenin's that a) a current so		ltage source	e) a resistive so	ource d) a capacitive sou	rce		
2.		following is not b) $A + A = A$						
3.		expression A+Ive law b) Comr			because of aw d) Complimentary law	w		
4.	AND-OR net a) NOR-NOR				e following network? I) NAND-NAND			
5.		iable K-map, fo m the reduced 6 b) TWO			ables & their compliments	S		
6.	Don't Cares i agree? a) NO	in K-map help i			lean expression – Do you dundant	1		
7.	The race proba) R-S Flip F	olem encountere lop b) D C	ed in counters i Clip flop c) J-K		d) M/S J-K Flip Flop			
8.	The no. of sta a) ONE	ates skipped in a b) TWO	a Mod 5 ripple c) THREE	Counter is, d) NONE				
9.	The number of a) 4	of Flip Flops red b) 9	quired to store c) 10	a DECIMAL N d) 16	IUMBER 1001 is			
10.	The Boolean a) 1	Expression, Y=b) 2A	c) 2	s equal to d) 2A+2		2		

	11.	The Boolean a) 0	Expression, Y=b) 1	=A.A.0.1.1 c) 2	d) A	
	12.	In RS Flip Flo a) SETs the F		le, the condition SETs the FF	n R=1; S=1 c) is ILLEGAL d) Toggles the FF	
	13.	FULL ADDE	ER circuit adds b) 3	'n' Bits at a tim	ne, where n=? d) 8	
	14.	In monolithic a) a Semicono		Si O2, Layer adonductor	cts as c) an Insulator d) a Catalyst	
	15.	Monolithic in a) on a integral base		n a micro subst	rate c) on a single stone d) on a ma	cro
II		STATE WH	ETHER TRU	E OR FALSE:		
	16.	AND gate is	one of the Univ	ersal gates.		
	17.	Ex-OR gives	the Boolean Ex	expression for SU	JM in a Half ADDER.	
	18.	Bubbled NAM	ND gives OR fu	unction.		
	19.	K map repres	ents the output	for all input ca	ses.	
	20.	The Maximus	m value for an	Integrated Resis	stor is 100 KΩ.	
III		FILL IN TH	E BLANKS:			
	21.	Number of Fl	ip Flops necess	sary for constru	cting a MOD10 ripple counter is	
	22.	The sum of P	roducts form le	eads to	network.	
	23.	Maximum po	wer is transfer	red when input	and output loads are	-
	24.	LED gives ou	nt light when _		_ biased	
	25.	In K-Map w	hile grouping,	each group s	hould at least have one independ	lent 1
		otherwise it is	s termed as a		Group.	

IV ANSWER IN ONE OR TWO SENTENCES:

26. Draw the circuit to get an OR function using AND & NOT gates.
27. State Supper position Theorem.
28. Define Energy source.
29. State Norton's theorem.
30. State Demorgan's Theorems.

XXXXXX

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2008-09 & thereafter)

SUBJECT CODE: PH/MC/EL14

B.Sc. DEGREE EXAMINATION NOVEMBER 2009 BRANCH III - PHYSICS FIRST SEMESTER

COURSE : MAJOR - CORE PAPER : ELECTRONICS I

TIME : 2 ½ HOURS MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 1. Implement OR, AND, NOT and EX-OR function using NOR gates.
- 2. SIMPLIFY the logic function using K-Map and realize the logic circuit using NAND gates. $F(ABCD) = \sum m(1,3,7,11,15)$ and don't care (0,2,5).

3. Show that i)
$$\overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$$
 ii) $AC+B+B\overline{D}+AB\overline{D}+\overline{A}C=B+C$

- 4. What is a register? Explain the shift right register.
- 5. A truth table has a '1' output from 0000 to 1001; has a '0' output from 1010 to 1011; the remaining are don't cares. Implement a simplified logic circuit using K-Map and NAND gates.
- 6. Show that the compliment of $(A + B)(B + C)(C + A) = \bar{A} \cdot \bar{B} + \bar{B} \cdot \bar{C} + \bar{C} \cdot \bar{A}$
- 7. Use superposition theorem to calculate the current in each branch of the network given below:

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(5 \times 15 = 45)$

- 1. Explain Thevenin's theorem with an example.
- 2. Describe the circuit of M/S Flip Flop and explain its working
- 3. Implement a 4-Bit Parallel Binary Adder / Subtractor circuit using Full Adders & Ex-OR gates. Explain the functioning of the Circuit with a suitable example.
- 4. Draw the logic circuit and explain the functioning of the following counters.
 - i) MOD 5 Ripple Counter
- ii) Down Counter
- 5. Describe the Fabrication of Integrated Circuit Diodes, Transistors and a Resistor.

xxxxxx