STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086. (For candidates admitted during the academic year 2008-09 \& thereafter)

SUBJECT CODE : PH/MC/EL14

B.Sc. DEGREE EXAMINATION NOVEMBER 2009

BRANCH III - PHYSICS
FIRST SEMESTER
REG. No.

COURSE	$:$	MAJOR - CORE
PAPER	$:$	ELECTRONICS I
TIME	$:$	30 MINS.

MAX. MARKS : 30

SECTION - A
 TO BE ANSWERED IN THE QUESTION PAPER ITSELF

ANSWER ALL QUESTIONS:

$(\mathbf{3 0} \times 1=30)$
I CHOOSE THE CORRECT ANSWERS:

1. Thevenin's theorem gives
a) a current source
b) a voltage source
c) a resistive source
d) a capacitive source
2. which of the following is not a correct Boolean identity?
a) $\mathrm{A}+1=1$
b) $\mathrm{A}+\mathrm{A}=\mathrm{A}$
c) $\mathrm{A}+1=\mathrm{A}$
d) $\mathrm{A}+0=\mathrm{A}$
3. The Boolean expression $\mathrm{A}+\mathrm{B} \cdot \mathrm{C}=(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{C})$ is TRUE because of
a) Associative law b) Commutative law
c) Distributive law
d) Complimentary law
4. AND-OR network is identically equivalent to which of the following network?
a) NOR-NOR
b) OR-AND
c) NAND-OR
d) NAND-NAND
5. In a Four variable K-map, for a Quad, ' N ' number of variables \& their compliments Drop-Out from the reduced expression - where $\mathrm{N}=$
a) ONE
b) TWO
c) THREE
d) FOUR
6. Don't Cares in K-map help in further reduction of the Boolean expression - Do you agree?
a) NO
b) Don't Care
c) YES
d) Redundant
7. The race problem encountered in counters is overcome in,
a) R-S Flip Flop
b) D Clip flop c) J-K Flip Flop
d) M/S J-K Flip Flop
8. The no. of states skipped in a Mod 5 ripple Counter is,
a) ONE
b) TWO
c) THREE
d) NONE
9. The number of Flip Flops required to store a DECIMAL NUMBER 1001 is
a) 4
b) 9
c) 10
d) 16
10. The Boolean Expression, $\mathrm{Y}=\mathrm{A}+\mathrm{A}+0+1+1$ is equal to
a) 1
b) 2 A
c) 2
d) $2 \mathrm{~A}+2$
11. The Boolean Expression, Y=A.A.0.1.1
a) 0
b) 1
c) 2
d) A
12. In RS Flip Flop's Truth Table, the condition $\mathrm{R}=1 ; \mathrm{S}=1$
a) SETs the FF
b) RESETs the FF
c) is ILLEGAL d) Toggles the FF
13. FULL ADDER circuit adds ' n ' Bits at a time, where $n=$?
a) 2
b) 3
c) 4
d) 8
14. In monolithic IC fabrication Si O 2, Layer acts as
a) a Semiconductor
b) a Conductor
c) an Insulator
d) a Catalyst
15. Monolithic in Greek means
a) on a integrated base b) on a micro substrate c) on a single stone d) on a macro base

II STATE WHETHER TRUE OR FALSE:

16. AND gate is one of the Universal gates.
17. Ex-OR gives the Boolean Expression for SUM in a Half ADDER.
18. Bubbled NAND gives OR function.
19. K map represents the output for all input cases.
20. The Maximum value for an Integrated Resistor is $100 \mathrm{~K} \Omega$.

III FILL IN THE BLANKS:

21. Number of Flip Flops necessary for constructing a MOD10 ripple counter is
22. The sum of Products form leads to \qquad -network.
23. Maximum power is transferred when input and output loads are \qquad
24. LED gives out light when \qquad biased
25. In K-Map while grouping, each group should at least have one independent 1 , otherwise it is termed as a \qquad Group.

IV ANSWER IN ONE OR TWO SENTENCES:

26. Draw the circuit to get an OR function using AND \& NOT gates.
27. State Supper position Theorem.
28. Define Energy source.
29. State Norton's theorem.
30. State Demorgan's Theorems.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086.
(For candidates admitted during the academic year 2008-09 \& thereafter)
SUBJECT CODE : PH/MC/EL14
B.Sc. DEGREE EXAMINATION NOVEMBER 2009

BRANCH III - PHYSICS
FIRST SEMESTER

COURSE	$:$	MAJOR - CORE
PAPER	$:$	ELECTRONICS I
TIME	$:$	$21 / 2$ HOURS

MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

1. Implement OR, AND, NOT and EX-OR function using NOR gates.
2. SIMPLIFY the logic function using K-Map and realize the logic circuit using NAND gates. $\mathrm{F}(\mathrm{ABCD})=\sum \mathrm{m}(1,3,7,11,15)$ and don't care $(0,2,5)$.
3. Show that i) $\overline{A+B+C}=\bar{A} \cdot \bar{B} \cdot \bar{C} \quad$ ii) $A C+B+B \bar{D}+A B \bar{D}+\bar{A} C=B+C$
4. What is a register? Explain the shift right register.
5. A truth table has a ' 1 ' output from 0000 to 1001 ; has a ' 0 ' output from 1010 to 1011 ; the remaining are don't cares. Implement a simplified logic circuit using K-Map and NAND gates.
6. Show that the compliment of $(A+B)(B+C)(C+A)=\bar{A} \cdot \bar{B}+\bar{B} \cdot \bar{C}+\bar{C} \cdot \bar{A}$
7. Use superposition theorem to calculate the current in each branch of the network given below:

SECTION - C
 ANSWER ANY THREE QUESTIONS: ($5 \times 15=45$)

1. Explain Thevenin's theorem with an example.
2. Describe the circuit of M/S Flip Flop and explain its working
3. Implement a 4-Bit Parallel Binary Adder / Subtractor circuit using Full Adders \& ExOR gates. Explain the functioning of the Circuit with a suitable example.
4. Draw the logic circuit and explain the functioning of the following counters.
i) MOD 5 - Ripple Counter
ii) Down Counter
5. Describe the Fabrication of Integrated Circuit Diodes, Transistors and a Resistor.
