STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2004 – 05 & thereafter)

SUBJECT CODE: MT/MC/AS54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2009 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE : MAJOR - CORE

PAPER : ALGEBRAIC STRUCTURES

TIME : 3 HOURS MAX. MARKS : 100

- 1. Define an abelian group. Give an example.
- **2.** Prove that (i) The identity element of a group *G* is unique

(ii)inverse of an element 'a' in a group is unique

- 3. State the cancellation Laws in a group *G*.
- 4. Define a cyclic group. Give an example
- 5. Prove that intersection of two subgroups is again a subgroup.
- 6. Let $\phi: G \to \overline{G}$ be a group homomorphism. Prove that (i) $\phi(e) = \overline{e}$ and
 - (ii) $\phi(a^{-1}) = (\phi(a))^{-1}$ where e and \overline{e} are identities of G and \overline{G} and $a \in G$.
- 7 Define a commutative ring.
- 8 Define an ideal of a ring.
- 9 Define a field.
- 10 Define maximal ideal.

SECTION – B (5X8=40) ANSWER ANY FIVE QUESTIONS

- 11. Prove that there is a one-to-one correspondence between any two right cosets of *H* in *G*.
- 12. State and prove Lagrange's Theorem.
- 13. Prove that a subgroup *N* of *G* is normal subgroup of *G* if and only if every left coset of *N* in *G* is a right coset of *N* in *G*.
- 14. State and prove Cayley's Theorem.
- 15. Prove that a finite integral domain is a field.
- 16. Prove that intersection of two ideals of a ring is again an ideal.
- 17. If U and V are ideals of R let $U+V=\{u+v/u\in U,v\in V\}$. Prove that U+V is an ideal.

/2/ MT/MC/AS54

SECTION - C

(2X20=40)

ANSWER ANY TWO QUESTIONS

18. (a) If H and K are subgroups of a group G of orders o(H) and o(K) respectively.

Prove that $o(HK) = \frac{o(H)o(K)}{o(H \cap K)}$.

- (b) If G is finite group and $a \in G$. Then prove that o(a)/o(G).
- 19. (a) $\phi: G \to G$ be a group homomorphism of G onto \overline{G} with Kernel K. Then prove that (i) K is a normal subgroup of G.
 - (ii) Prove that G/K is isomorphic to G.
 - (b) Prove that any field is an integral domain.
- 20. Prove that every integral domain can be imbedded in a field.