\section*{SUBJECT CODE : 19PH/PC/MP14 M.Sc., DEGREE EXAMINATION NOVEMBER 2019 \\ PHYSICS \\ FIRST SEMESTER \\ | COURSE | $:$ | CORE | |
| :--- | :--- | :--- | :--- |
| PAPER | $:$ | MATHEMATICAL PHYSICS - I | |
| TIME | $:$ | 3 HOURS | MAX. MARKS $\mathbf{: ~ 1 0 0}$ |}

SECTION - A

ANSWER ALL QUESTIONS:

1. List the properties of Δ and E .
2. What is interpolation and extrapolation.
3. What is meant by singularity of an analytic function?
4. State Cauchy's residue theorem.
5. What is a basis?
6. Give the relation between ket and bra vectors and inner product.
7. Give Einstein's summation convention.
8. If A^{μ} and B_{v} are the components of a contravariant and covariant tensors of rank one, show that $C_{v}{ }^{\mu}=A^{\mu} B_{v}$ are the components of a mixed tenson of rank two.
9. Show that the beta function is symmetric.
10. What are Henkel functions?

> SECTION - B

ANSWER ANY FIVE QUESTIONS:

(5x5=25)
11. State and prove Newton Gregory formula.
12. Expand $\mathrm{f}(\mathrm{z})=\frac{1}{(\mathrm{z}+1)(\mathrm{z}+3)}$ as a Laurent's series valid for (a) $|\mathrm{z}|<1$ and (b) $1<|\mathrm{z}|<3$.
13. Derive the equation of heat flow in solids.
14. Write a note on outer product and inner product of tensors.
15. Prove the recurrence relation: $\mathrm{xJ}_{\mathrm{n}}{ }^{\prime}(\mathrm{x})=\mathrm{xJ}_{\mathrm{n}}(\mathrm{x})-\mathrm{xJ}_{\mathrm{n}+1}(\mathrm{x})$.
16. Find the numerical solution of $\frac{d y}{d x}=\mathrm{x}+\mathrm{y}$, from $\mathrm{x}=0$ to 0.2 by Euler's method.
17. Derive the Cauchy Reimann equation for a function $f(z)$ to be analytic.

SECTION - C

ANSWER ANY THREE QUESTIONS:

18. (a) Give the Newton Raphson formula to find the square root, cube root and $p^{\text {th }}$ root of a number.
(b) Using Newton Raphson method to find the positive root of $f(x)=2 x^{3}-3 x-6=0$ correct to five decimal places.
19. (a) State and prove Cauchy's integral formula.
(b) Evaluate the integral $\oint_{c} \frac{z}{z^{2}-3 z+2}$ dz where c is the circle $|\mathrm{z}-2|=\frac{1}{2}$.
20. Explain the Gram-Schmidt orthogonalisation process. Use it construct an orthonormal set of vectors from the set $X_{1}=(1,2,1), X_{2}=(2,1,4)$ and $X_{3}=(4,5,6)$.
21. Discuss the applications of tensors in Elasticity.
22. (a) Show that the Legendre's polynomials are orthogonal.
(b) Show that $\mathrm{P}_{\mathrm{n}}(1)=1$
