STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2019 – 2020)

SUBJECT CODE : 19PH/PC/MP14 M.Sc., DEGREE EXAMINATION NOVEMBER 2019 PHYSICS FIRST SEMESTER

COURSE	:	CORE
PAPER	:	MATHEMATICAL PHYSICS - I
TIME	:	3 HOURS

MAX. MARKS: 100

SECTION - A

ANSWER ALL QUESTIONS:

(10x3=30)

- 1. List the properties of Δ and E.
- 2. What is interpolation and extrapolation.
- 3. What is meant by singularity of an analytic function?
- 4. State Cauchy's residue theorem.
- 5. What is a basis?
- 6. Give the relation between ket and bra vectors and inner product.
- 7. Give Einstein's summation convention.
- 8. If A^{μ} and B_{ν} are the components of a contravariant and covariant tensors of rank one, show that $C_{\nu}^{\ \mu} = A^{\mu} B_{\nu}$ are the components of a mixed tenson of rank two.
- 9. Show that the beta function is symmetric.
- 10. What are Henkel functions?

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 11. State and prove Newton Gregory formula.
- 12. Expand $f(z) = \frac{1}{(z+1)(z+3)}$ as a Laurent's series valid for (a) $|z| \le 1$ and (b) $1 \le |z| \le 3$.
- 13. Derive the equation of heat flow in solids.
- 14. Write a note on outer product and inner product of tensors.
- 15. Prove the recurrence relation: $xJ_n'(x) = xJ_n(x) xJ_{n+1}(x)$.
- 16. Find the numerical solution of $\frac{dy}{dx} = x + y$, from x = 0 to 0.2 by Euler's method.
- 17. Derive the Cauchy Reimann equation for a function f(z) to be analytic.

SECTION – C

ANSWER ANY THREE QUESTIONS:

- 18. (a) Give the Newton Raphson formula to find the square root, cube root and pthroot of a number.
 - (b) Using Newton Raphson method to find the positive root of $f(x) = 2x^3 3x 6 = 0$ correct to five decimal places.
- 19. (a) State and prove Cauchy's integral formula.

(b) Evaluate the integral $\oint_c \frac{z}{z^2 - 3z + 2} dz$ where *c* is the circle $|z - 2| = \frac{1}{2}$.

- 20. Explain the Gram-Schmidt orthogonalisation process. Use it construct an orthonormal set of vectors from the set $X_1 = (1, 2, 1), X_2 = (2, 1, 4)$ and $X_3 = (4, 5, 6)$.
- 21. Discuss the applications of tensors in Elasticity.
- 22. (a) Show that the Legendre's polynomials are orthogonal. (b) Show that $P_n(1) = 1$

(3x15=45)

(5x5=25)