STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2019 – 20)

SUBJECT CODE: 19MT/PC/OD14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2019 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	: CORE	
PAPER	: ORDINARY DIFFERENTIAL EQUATIONS	5
TIME	: 3 HOURS	MAX. MARKS: 100

$\begin{array}{l} \text{SECTION} - \text{A} & (5 \text{ X } 2 = 10) \\ \text{ANSWER ALL THE QUESTIONS} \end{array}$

- 1. Find the general solution of $x^{(4)} 16x = 0$.
- 2. Find e^{At} when $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$.
- 3. Define a regular singular point.
- 4. Compute the first two consecutive approximations for the solution of the equation $x' = x^2$, x(0) = 1.
- 5. Define a Green function.

$SECTION - B \qquad (5 X 6 = 30)$ ANSWER ANY FIVE QUESTIONS

6. Solve: $x^m + x^n = 0$, x(0) = 1, x'(0) = 0 and x''(0) = 1.

7. Solve: Consider the linear system x' = A(t)x, where $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $A = \begin{bmatrix} -3 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{bmatrix}$.

Show that the matrix $\Phi(t) = \begin{bmatrix} e^{-3t} & te^{-3t} & \frac{e^{-3t}t^2}{2!} \\ 0 & e^{-3t} & te^{-3t} \\ 0 & 0 & e^{-3t} \end{bmatrix}$ is a fundamental matrix.

- 8. If P_n is a Legendre polynomial then prove that $\int_{-1}^{1} P_n^2(t) dt = \frac{2}{2n+1}$.
- 9. Let x(t) = x(t, t₀, x₀) and x*(t) = x(t, t₀*, x₀) be a solution of the IVP x' = f(t, x), x(t₀) = x₀ and x' = f(t, x), x(t₀*) = x₀* respectively on an interval a ≤t ≤b. Let (t, x(t)), (t, x*(t)) lie in a domain D for a ≤t ≤b. Further, let f ∈ Lip(D, K) be bounded by L in D. Prove that for any ∈>0, there exists a δ = δ(∈) > 0 such that |x(t) x*(t)| <∈, a ≤t ≤b whenever |t t₀*| <δ and |x x₀*| <δ.

10. Find the eigen values and eigen functions of the BVP $x'' + \lambda x = 0$, x(0) = 0, x'(1) = 0.

- 11. Assume that
 - (i) *A*, *B* are finite real numbers;

(ii) The functions p'(t), q(t) and r(t) are real valued continuous functions on [A, B]. For the parameters λ, μ ($\lambda \neq \mu$), let x and y be the corresponding solutions of $(px')'+qx+\lambda rx=0$, $A \leq t \leq B$ such that $\left[pW(x, y)\right]_{A}^{B} = 0$, where W(x, y) is the Wronskian of x and y. Prove that $\int_{A}^{B} r(s)x(s)y(s) = 0$.

12. Prove that $J_n(t) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - t\sin\theta) d\theta$.

$SECTION - C \qquad (3 X 20 = 60)$ ANSWER ANY THREE QUESTIONS

- 13. (a) Let b₁, b₂,..., b_n be real or complex valued functions defined and continuous on an interval I and φ₁, φ₂,..., φ_n are n solutions of the equation x⁽ⁿ⁾(t) + b₁(t)x⁽ⁿ⁻¹⁾(t) + + b_n(t)x(t) = 0, t ∈ I existing on I. Prove that these n solutions are linearly independent on I if and only if the Wronskian w(t) ≠ 0 for every t ∈ I. (15 Marks)
 (b) Prove that there are three linearly independent solutions of the third order acustion
 - (b) Prove that there are three linearly independent solutions of the third order equation $x'''+b_1(t)x''+b_2(t)x'+b_3(t)x=0, t \in I$, where b_1, b_2 and b_3 are functions defined and continuous on an interval I. (5 Marks)
- 14. Let A(t) be an $n \times n$ matrix that is continuous in t on a closed and bounded interval I. Prove that there exists a solution to the IVP x' = A(t)x, $x(t_0) = x_0$; $t, t_0 \in I$ and also prove that this solution is unique.
- 15. (a) Find the power series solutions of the equation $x''(t) + K \sin x(t) = 0$ with initial

conditions
$$x(0) = \frac{\pi}{6}$$
 and $x'(0) = 0$. (5 Marks)

- (b) Solve the Legendre equation $(1-t^2)x''-2tx'+p(p+1)x=0$, where p is a real number by power series method. (15 Marks)
- 16. State and prove Picard's theorem.
- 17. Use the method of separation of variables to solve the boundary value problem

$$\frac{\partial u}{\partial t}(x,t) = k \frac{\partial^2 u}{\partial x^2}(x,t), \quad (0 < x < c, t > 0)$$

$$\frac{\partial u}{\partial t}(0,t) = 0, \quad \frac{\partial u}{\partial x}(c,t) = 0, \quad (t > 0) \text{ and } u(x,0) = f(x), \quad (0 < x < c).$$