SUBJECT CODE: 19MT/PC/OD14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2019
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE : CORE

PAPER : ORDINARY DIFFERENTIAL EQUATIONS TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A

$(5 \times 2=10)$

ANSWER ALL THE QUESTIONS

1. Find the general solution of $x^{(4)}-16 x=0$.
2. Find $e^{A t}$ when $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$.
3. Define a regular singular point.
4. Compute the first two consecutive approximations for the solution of the equation $x^{\prime}=x^{2}$, $x(0)=1$.
5. Define a Green function.

> SECTION - B ANSWER ANY FIVE QUESTIONS
6. Solve: $x^{m}+x^{n}=0, x(0)=1, x^{\prime}(0)=0$ and $x^{\prime \prime}(0)=1$.
7. Solve: Consider the linear system $x^{\prime}=A(t) x$, where $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ and $A=\left[\begin{array}{ccc}-3 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -3\end{array}\right]$. Show that the matrix $\Phi(t)=\left[\begin{array}{ccc}e^{-3 t} & t e^{-3 t} & \frac{e^{-3 t} t^{2}}{2!} \\ 0 & e^{-3 t} & t e^{-3 t} \\ 0 & 0 & e^{-3 t}\end{array}\right]$ is a fundamental matrix.
8. If P_{n} is a Legendre polynomial then prove that $\int_{-1}^{1} P_{n}^{2}(t) d t=\frac{2}{2 n+1}$.
9. Let $x(t)=x\left(t, t_{0}, x_{0}\right)$ and $x^{*}(t)=x\left(t, t_{0}^{*}, x_{0}^{*}\right)$ be a solution of the IVP $x^{\prime}=f(t, x)$, $x\left(t_{0}\right)=x_{0}$ and $x^{\prime}=f(t, x), x\left(t_{0}^{*}\right)=x_{0}^{*}$ respectively on an interval $a \leq t \leq b$. Let $(t, x(t)), \quad\left(t, x^{*}(t)\right)$ lie in a domain D for $a \leq t \leq b$. Further, let $f \in \operatorname{Lip}(D, K)$ be bounded by L in D. Prove that for any $\in>0$, there exists a $\delta=\delta(\in)>0$ such that $\left|x(t)-x^{*}(t)\right|<\in, a \leq t \leq b$ whenever $\left|t-t_{0}^{*}\right|<\delta$ and $\left|x-x_{0}^{*}\right|<\delta$.
10. Find the eigen values and eigen functions of the BVP $x^{\prime \prime}+\lambda x=0, x(0)=0, x^{\prime}(1)=0$.
11. Assume that
(i) A, B are finite real numbers;
(ii) The functions $p^{\prime}(t), q(t)$ and $r(t)$ are real valued continuous functions on $[A, B]$. For the parameters $\lambda, \mu(\lambda \neq \mu)$, let x and y be the corresponding solutions of $\left(p x^{\prime}\right)^{\prime}+q x+\lambda r x=0, A \leq t \leq B$ such that $[p W(x, y)]_{A}^{B}=0$, where $W(x, y)$ is the Wronskian of x and y. Prove that $\int_{A}^{B} r(s) x(s) y(s)=0$.
12. Prove that $J_{n}(t)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-t \sin \theta) d \theta$.

SECTION - C

$(3 \times 20=60)$
ANSWER ANY THREE QUESTIONS
13. (a) Let $b_{1}, b_{2}, \ldots, b_{n}$ be real or complex valued functions defined and continuous on an interval I and $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ are n solutions of the equation
$x^{(n)}(t)+b_{1}(t) x^{(n-1)}(t)+\ldots .+b_{n}(t) x(t)=0, t \in I$ existing on I. Prove that these n solutions are linearly independent on I if and only if the Wronskian $w(t) \neq 0$ for every $t \in I$.
(15 Marks)
(b) Prove that there are three linearly independent solutions of the third order equation x "' $+b_{1}(t) x "+b_{2}(t) x^{\prime}+b_{3}(t) x=0, t \in I$, where b_{1}, b_{2} and b_{3} are functions defined and continuous on an interval I.
(5 Marks)
14. Let $A(t)$ be an $n \times n$ matrix that is continuous in t on a closed and bounded interval I. Prove that there exists a solution to the IVP $x^{\prime}=A(t) x, x\left(t_{0}\right)=x_{0} ; t, t_{0} \in I$ and also prove that this solution is unique.
15. (a) Find the power series solutions of the equation $x "(t)+K \sin x(t)=0$ with initial conditions $x(0)=\frac{\pi}{6}$ and $x^{\prime}(0)=0$.
(b) Solve the Legendre equation $\left(1-t^{2}\right) x "-2 t x^{\prime}+p(p+1) x=0$, where p is a real number by power series method.
(15 Marks)
16. State and prove Picard's theorem.
17. Use the method of separation of variables to solve the boundary value problem

$$
\begin{aligned}
& \frac{\partial u}{\partial t}(x, t)=k \frac{\partial^{2} u}{\partial x^{2}}(x, t),(0<x<c, t>0) \\
& \frac{\partial u}{\partial t}(0, t)=0, \frac{\partial u}{\partial x}(c, t)=0,(t>0) \text { and } u(x, 0)=f(x),(0<x<c) .
\end{aligned}
$$

