STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2019 – 20)

SUBJECT CODE: 19MT/PC/GT14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2019 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	: CORE
PAPER	: GRAPH THEORY
TIME	: 3 HOURS

MAX. MARKS: 100

$\begin{array}{l} \text{SECTION} - \text{A} & (5 \text{ X } 2 = 10) \\ \text{ANSWER ALL THE QUESTIONS} \end{array}$

- 1. Give the incidence and adjacency matrix for a complete graph on 5 vertices.
- 2. Find the connectivity and edge-connectivity for the following graph:

- 3. When do you say a graph *G* is critical?
- 4. State Kuratowski's theorem.
- 5. Draw a hypercube network of dimension 4.

$SECTION - B \qquad (5 X 6 = 30)$ ANSWER ANY FIVE QUESTIONS

- 6. Give a characterization for bipartite graphs using the concept of a cycle.
- 7. Prove that a vertex v of tree G is a cut-vertex of G if and only if d(v) > 1.
- 8. Prove that in a bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum covering.
- 9. If *G* is a connected graph which is not an odd cycle, then show that *G* has a 2-edge coloring in which both colors are represented at each vertex of degree at least two.
- 10. Prove the theorem that gives the necessary and sufficient condition for a graph G to have a set consisting of any two adjacent vertices as a minimal dominating set of G.
- 11. Explain the basic principles of network designing.
- 12. Let *G* be a graph with order *n*. Prove that for any $\theta \in Aut(G)$, its restriction to *X* is an isomorphism between G[X] and $G[\theta(X)]$ for any non-empty $X \subseteq V(G)$, where

 $\theta(X) = \{ y \in V(G) : y = \theta(x), x \in X \}.$

$SECTION - C \qquad (3 X 20 = 60)$ ANSWER ANY THREE QUESTIONS

13. State Dijkstra's algorithm. Use it to find the shortest path between v_1 and all other vertices in the following graph.

- 14. (i) Show that a bipartite graph *G* with bipartition (X, Y) has a matching that saturates every vertex in *X* if and only if $|N(S)| \ge |S|$ for all $S \subseteq X$.
 - (ii) If α'(G) and β'(G) denotes the edge independence number and edge covering number of a graph G respectively, then prove that α'(G) + β'(G) = v for δ > 0.
- 15. (i) State and prove Brook's theorem.
 - (ii) For a simple graph G, prove that either $\chi' = \Delta$ or $\chi' = \Delta + 1$. (10+10)
- 16. (i) Derive Euler's formula.
 - (ii) Let *G* be a nonplanar connected graph that contains no subdivision of $K_{3,3}$ or K_5 having a few edges. Then prove that *G* is simple and 3-connected.
- 17. Define a De Brujin, Kautz, Circulant networks and state basic properties of these networks.