SUBJECT CODE: 19MT/PC/GT14

## M. Sc. DEGREE EXAMINATION, NOVEMBER 2019 <br> BRANCH I - MATHEMATICS <br> FIRST SEMESTER

COURSE : CORE
PAPER : GRAPH THEORY
TIME : 3 HOURS
MAX. MARKS : 100

## SECTION - A ( $5 \times 2=10)$ <br> ANSWER ALL THE QUESTIONS

1. Give the incidence and adjacency matrix for a complete graph on 5 vertices.
2. Find the connectivity and edge-connectivity for the following graph:

3. When do you say a graph $G$ is critical?
4. State Kuratowski's theorem.
5. Draw a hypercube network of dimension 4.

> SECTION - B
$(5 \times 6=30)$
ANSWER ANY FIVE QUESTIONS
6. Give a characterization for bipartite graphs using the concept of a cycle.
7. Prove that a vertex $v$ of tree $G$ is a cut-vertex of $G$ if and only if $d(v)>1$.
8. Prove that in a bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum covering.
9. If $G$ is a connected graph which is not an odd cycle, then show that $G$ has a 2-edge coloring in which both colors are represented at each vertex of degree at least two.

10 . Prove the theorem that gives the necessary and sufficient condition for a graph $G$ to have a set consisting of any two adjacent vertices as a minimal dominating set of $G$.
11. Explain the basic principles of network designing.
12. Let $G$ be a graph with order $n$. Prove that for any $\theta \in A u t(G)$, its restriction to $X$ is an isomorphism between $G[X]$ and $G[\theta(X)]$ for any non-empty $X \subseteq V(G)$, where

$$
\theta(X)=\{y \in V(G): y=\theta(x), x \in X\} .
$$

## SECTION - C

$(3 \times 20=60)$

## ANSWER ANY THREE QUESTIONS

13. State Dijkstra's algorithm. Use it to find the shortest path between $v_{1}$ and all other vertices in the following graph.

14. (i) Show that a bipartite graph $G$ with bipartition $(X, Y)$ has a matching that saturates every vertex in $X$ if and only if $|N(S)| \geq|S|$ for all $S \subseteq X$.
(ii) If $\alpha^{\prime}(G)$ and $\beta^{\prime}(G)$ denotes the edge independence number and edge covering number of a graph $G$ respectively, then prove that $\alpha^{\prime}(G)+\beta^{\prime}(G)=v$ for $\delta>0$.
15. (i) State and prove Brook's theorem.
(ii) For a simple graph G, prove that either $\chi^{\prime}=\Delta$ or $\chi^{\prime}=\Delta+1$.
16. (i) Derive Euler's formula.
(ii) Let $G$ be a nonplanar connected graph that contains no subdivision of $K_{3,3}$ or $K_{5}$ having a few edges. Then prove that $G$ is simple and 3-connected.
17. Define a De Brujin, Kautz, Circulant networks and state basic properties of these networks.
