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SECTION – A   ( 5 X 2 = 10 ) 

 ANSWER ALL THE QUESTIONS  

 

1. Give the incidence and adjacency matrix for a complete graph on 5 vertices. 

2. Find the connectivity and edge-connectivity for the following graph: 

            

3. When do you say a graph   is critical? 

4. State Kuratowski’s theorem. 

5. Draw a hypercube network of dimension 4. 

 

SECTION – B   ( 5 X 6 = 30 ) 

ANSWER ANY FIVE QUESTIONS 

 

6. Give a characterization for bipartite graphs using the concept of a cycle. 

7. Prove that a vertex   of tree   is a cut-vertex of   if and only if       . 

8. Prove that in a bipartite graph, the number of edges in a maximum matching is equal 

to the number of vertices in a minimum covering. 

9. If   is a connected graph which is not an odd cycle, then show that   has a 2-edge 

coloring in which both colors are represented at each vertex of degree at least two. 

10. Prove the theorem that gives the necessary and sufficient condition for a graph   to 

have a set consisting of any two adjacent vertices as a minimal dominating set of  . 

11. Explain the basic principles of network designing. 

12. Let   be a graph with order  . Prove that for any         , its restriction to   is an 

isomorphism between      and       ] for any non-empty       , where  

                          . 
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SECTION – C   ( 3 X 20 = 60 ) 

ANSWER ANY THREE QUESTIONS 

 

13. State Dijkstra’s algorithm. Use it to find the shortest path between    and all other 

vertices in the following graph. 
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14. (i) Show that a bipartite graph   with bipartition       has a matching that saturates  

     every vertex in   if and only if |    |  | | for all    .   

(ii) If        and        denotes the edge independence number and edge covering  

      number of a graph   respectively, then prove that                    

      for      .         (10+10) 

 

15. (i) State and prove Brook’s theorem.       

(ii) For a simple graph G, prove that either  =  or  =  + 1.   (10+10) 

  

16. (i) Derive Euler’s formula. 

(ii) Let G be a nonplanar connected graph that contains no subdivision of      or     

     having a few edges. Then prove that G is simple and 3-connected. 

 

17. Define a De Brujin, Kautz, Circulant networks and state basic properties of these 

networks. 

 
                                           

 

 

 

 


