# STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 

(For candidates admitted during the academic year 2019-20)
SUBJECT CODE : 19MT/PC/AA14

## M. Sc. DEGREE EXAMINATION, NOVEMBER 2019 <br> BRANCH I - MATHEMATICS <br> FIRST SEMESTER

| COURSE | : CORE |
| :--- | :--- |
| PAPER | $:$ ABSTRACT ALGEBRA |
| TIME | $: 3$ HOURS |

MAX. MARKS : 100

## SECTION - A <br> ANSWER ALL QUESTIONS

$(5 \times 2=10)$

1. List the conjugate classes of the symmetric group $S_{3}$.
2. Define a unit in a ring and write down all the units of the ring Z of all integers.
3. Define a unique factorization domain and give an example.
4. Does there exist an extension field $K$ of the field $R$ of real numbers which is contained in the field C of Complex numbers? Give reasons for your answer.
5. Define a normal extension of a field and give an example.

## SECTION - B <br> $(5 \times 6=30)$ <br> ANSWER ANY FIVE QUESTIONS

6. Prove that any group of order $p^{2}, p$ a prime, is abelian.
7. Prove that any prime number of the form $4 n+1$ can be expressed as a sum of two squares.
8. State and prove the Eisenstein Criterion about the irreducibility of a polynomial with integer coefficients.
9. If $a$ and $b$ in $K$ are algebraic over $F$ of degrees $m$ and $n$, respectively, and if $m$ and $n$ are relatively prime, prove that $F(a, b)$ is of degree $m n$ over $F$.
10. Prove that a group $G$ is solvable if and only if $G^{(k)}=(e)$ for some $k$.
11. If $K$ is a finite extension of $F$, then prove that $G(K, F)$ is a finite group and satisfies $o(G(K, F)) \leq[K: F]$.
12. Define a simple extension of a field. Is a simple extension a finite extension? Justify your answer.

SECTION - C
$(3 \times 20=60)$

## ANSWER ANY THREE QUESTIONS

13. (a) Prove that in a finite group $G$, the number of elements conjugate to an element $a$ in $G$ is equal to the index of the normalizer of $a$ in $G$.
(b) Prove that any two $p$-Sylow subgroups of a finite group $G$ are conjugates.
14. (a) Prove that the ring of Gaussian integers is a Euclidean ring.
(b) Prove that an ideal $A=\left(a_{0}\right)$ is a maximal ideal of the Euclidean ring $R$ if and only if $a_{0}$ is a prime element of $R$.
15. If $R$ is a unique factorization domain, prove that the polynomial ring $R[x]$ is also a unique factorization domain, by proving all the necessary results that are used in the proof.
16. (a) Prove that an element $a \in K$ is algebraic over $F$ if and only if $F(a)$ is a finite extension of $F$.
(b) stateand Prove the Remainder theorem.
17. Prove that $K$ is a normal extension of $F$ if and only if $K$ is a splitting field of a polynomial over $F$.
