STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2015-16 \& thereafter)

SUBJECT CODE: 15MT/PC/GT34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2019
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : CORE
PAPER : GRAPH THEORY
TIME : 3 HOURS
MAX. MARKS : 100

SECTION - A
($5 \times 2=10$)
ANSWER ALL THE QUESTIONS

1. When are two graphs said to be identical?
2. Define an M-alternating path in a graph G.
3. Define chromatic number of a graph G.
4. Define a directed graph.
5. Explain graph embedding problem.

> SECTION - B
$(5 \times 6=30)$
ANSWER ANY FIVE QUESTIONS
6. Prove that an edge e of a graph G is a cut-edge of G if and only if e is contained in no cycle of G.
7. With usual notations prove that $\kappa \leq \kappa^{\prime} \leq \delta$.
8. If G is a k-regular bipartite graph with $k>0$, then prove that G has a perfect matching.
9. Prove that no vertex cut is a clique in critical graph.
10. Show that $v-\varepsilon+\phi=2$ for a connected plane graph.
11. (i) State Kuratowski's theorem
(ii) Prove that at least one of H_{1} and H_{2} is nonplanar for a nonplanar graph G.
12. Define a hypercube network Q_{n} and state some fundamental properties of Q_{n}.

$$
\begin{array}{cc}
\text { SECTION }- \text { C } & (3 \times 20=60) \\
\text { ANSWER ANY THREE QUESTIONS }
\end{array}
$$

13. State Dijkstra's algorithm and use it to find the shortest distance between u_{0} and all other vertices in the following graph.

14. (i) Prove that a matching M in a graph G is a maximum matching if and only if G contains no M-augmenting path.
(ii) Show that a set $S \subseteq V$ is an independent set of a graph G if and only if $V-S$ is a covering of G.
(5 marks)
15. (i) Show that if G is a simple graph, then $\pi_{k}(G)=\pi_{k}(G-e)-\pi_{k}(G \cdot e)$ for any edge e of G.
(ii) For a simple graph G, prove that either $\chi^{\prime}=\Delta$ or $\chi^{\prime}=\Delta+1$.
16. (i) Prove that every planar graph is 5 -vertex colorable.
(ii) Prove that a digraph D contains a directed path of length $\chi-1$.
17. Explain the basic principles in the process of design of an interconnection networks.
