### STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16 & thereafter)

#### SUBJECT CODE: 15MT/PC/GT34

#### M. Sc. DEGREE EXAMINATION, NOVEMBER 2019 BRANCH I - MATHEMATICS THIRD SEMESTER

| COURSE | : CORE         |
|--------|----------------|
| PAPER  | : GRAPH THEORY |
| TIME   | : 3 HOURS      |

MAX. MARKS: 100

(5 X 2 = 10)

#### SECTION – A ANSWER ALL THE QUESTIONS

- 1. When are two graphs said to be identical?
- 2. Define an *M*-alternating path in a graph *G*.
- 3. Define chromatic number of a graph *G*.
- 4. Define a directed graph.
- 5. Explain graph embedding problem.

## $SECTION - B \qquad (5 X 6 = 30)$ ANSWER ANY FIVE QUESTIONS

- 6. Prove that an edge e of a graph G is a cut-edge of G if and only if e is contained in no cycle of G.
- 7. With usual notations prove that  $\kappa \leq \kappa' \leq \delta$ .
- 8. If G is a k-regular bipartite graph with k > 0, then prove that G has a perfect matching.
- 9. Prove that no vertex cut is a clique in critical graph.
- 10. Show that  $\nu \varepsilon + \phi = 2$  for a connected plane graph.
- 11. (i) State Kuratowski's theorem

(ii) Prove that at least one of  $H_1$  and  $H_2$  is nonplanar for a nonplanar graph G. (2+4) 12. Define a hypercube network  $Q_n$  and state some fundamental properties of  $Q_n$ .

# $SECTION - C \qquad (3 X 20 = 60)$ ANSWER ANY THREE QUESTIONS

13. State Dijkstra's algorithm and use it to find the shortest distance between  $u_0$  and all other vertices in the following graph.



..2

- 14. (i) Prove that a matching *M* in a graph *G* is a maximum matching if and only if *G* contains no *M*-augmenting path. (15 marks)
  - (ii) Show that a set  $S \subseteq V$  is an independent set of a graph G if and only if V-S is a covering of G. (5 marks)

| 15. (i) Show that if G is a simple graph, then $\pi_k(G) = \pi_k(G - e) - \pi_k(G \cdot e)$ for any |            |  |
|-----------------------------------------------------------------------------------------------------|------------|--|
| edge e of G.                                                                                        | (10 marks) |  |
| (ii) For a simple graph G, prove that either $\chi' = \Delta$ or $\chi' = \Delta + 1$ .             | (10 marks) |  |
| 16. (i) Prove that every planar graph is 5-vertex colorable.                                        | (10 marks) |  |
| (ii) Prove that a digraph D contains a directed path of length $\chi$ – 1.                          | (10 marks) |  |

17. Explain the basic principles in the process of design of an interconnection networks.

###