STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16& thereafter)

SUBJECT CODE: 15MT/PC/CA34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2019 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	:	CORE
PAPER	:	COMPLEX ANALYSIS
TIME	:	3 HOURS

MAX. MARKS: 100

SECTION-A

ANSWER ALL QUESTIONS:

- 1. What is the necessary and sufficient condition for a line integral to depend only on the end points?
- 2. Why is the integral of an exact differential over any cycle zero?
- 3. Find $\Gamma\left(\frac{1}{2}\right)$.
- 4. Define equi-continuity.
- 5. Give any two applications of conformal mapping in Fluid Dynamics.

SECTION-B ANSWER ANY FIVE QUESTIONS:

 $(5 \times 6 = 30)$

 $(5 \times 2 = 10)$

- Define index of a point *a* with respect to a curve γ and prove that a function of a index n(γ, a) is constant in each of the regions determined by γ and zero in the unbounded region.
- 7. Derive Poissons' formula.
- Prove that the infinite product Π₁[∞](1 + a_n) with 1 + a_n ≠ 0 converges simultaneously with the series Σ₁[∞] log(1 + a_n) whose terms represent the values of the principal branch of the logarithm.
- 9. How can the Riemann Zeta function be extended to the whole plane?
- Show that the family ℑ is normal ⇔ its closure with respect to a distance function is compact.
- 11. Let f be a topological mapping of a region Ω onto a region Ω' . If $\{z_n\}$ tends to the boundary of Ω then prove that $\{f(z_n)\}$ tends to the boundary of Ω' .
- 12. What is known as the Schwarz triangle function?

SECTION-C ANSWER ANY THREE QUESTIONS: (3×20 =60)

- 13. a) State and prove Cauchy's theorem for a rectangle.
 - b) If the piecewise differentiable closed curve γ does not pass through a point *a* then prove that the value of the integral $\int_{\gamma} \frac{dz}{z-a}$ is a multiple of $2\pi i$. (12+8)
- 14. a) If f(z) is analytic in Ω , then prove that $\int_{\gamma} f(z)dz = 0$ for every cycle γ which is homologous to zero in Ω .
 - b) State and prove the Reflection Principle. (8+12)
- 15. Find the representation for Euler's Gamma function.
- 16. State and prove Arzela's theorem.
- 17. State and prove the Riemann mapping theorem.
