STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2015-16\& thereafter)

SUBJECT CODE: 15MT/PC/CA34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2019
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE	: CORE
PAPER	$:$ COMPLEX ANALYSIS
TIME	$: 3$ HOURS

SECTION-A

ANSWER ALL QUESTIONS:

1. What is the necessary and sufficient condition for a line integral to depend only on the end points?
2. Why is the integral of an exact differential over any cycle zero?
3. Find $\Gamma\left(\frac{1}{2}\right)$.
4. Define equi-continuity.
5. Give any two applications of conformal mapping in Fluid Dynamics.

SECTION-B

ANSWER ANY FIVE QUESTIONS:

6. Define index of a point a with respect to a curve γ and prove that a function of a index $n(\gamma, a)$ is constant in each of the regions determined by γ and zero in the unbounded region.
7. Derive Poissons' formula.
8. Prove that the infinite product $\prod_{1}^{\infty}\left(1+a_{n}\right)$ with $1+a_{n} \neq 0$ converges simultaneously with the series $\sum_{1}^{\infty} \log \left(1+a_{n}\right)$ whose terms represent the values of the principal branch of the logarithm.
9. How can the Riemann Zeta function be extended to the whole plane?
10. Show that the family \mathfrak{J} is normal \Leftrightarrow its closure with respect to a distance function is compact.
11. Let f be a topological mapping of a region Ω onto a region Ω^{\prime}. If $\left\{z_{n}\right\}$ tends to the boundary of Ω then prove that $\left\{f\left(z_{n}\right)\right\}$ tends to the boundary of Ω^{\prime}.
12. What is known as the Schwarz triangle function?

SECTION-C

ANSWER ANY THREE QUESTIONS:

13. a) State and prove Cauchy's theorem for a rectangle.
b) If the piecewise differentiable closed curve γ does not pass through a point a then prove that the value of the integral $\int_{\gamma} \frac{d z}{z-a}$ is a multiple of $2 \pi i$.
14. a) If $f(z)$ is analytic in Ω, then prove that $\int_{\gamma} f(z) d z=0$ for every cycle γ which is homologous to zero in Ω.
b) State and prove the Reflection Principle.
15. Find the representation for Euler's Gamma function.
16. State and prove Arzela's theorem.
17. State and prove the Riemann mapping theorem.
