STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86

 (For candidates admitted during the academic year 2015-2016 \& thereafter)SUBJECT CODE: 15CH/PC/MS34
M.Sc. DEGREE EXAMINATION, NOVEMBER 2019 BRANCH IV- CHEMISTRY

THIRD SEMESTER
COURSE : CORE

PAPER : MOLECULAR SPECTROSCOPY
TIME : 3 HOURS
MAX.MARKS :100

SECTION - A

(20x1=20)

Answer all the questions:

Choose the correct answer:

1. The region of group frequency (IR) for $>\mathrm{C}=\mathrm{C}<$ stretching is
(a) $3700-2500 \mathrm{~cm}^{-1}$
(b) $2500-2000 \mathrm{~cm}^{-1}$
(c) $2000-1600 \mathrm{~cm}^{-1}$
(d) $1600-1450 \mathrm{~cm}^{-1}$
2. The molecule which is IR inactive and Raman active is
(a) HCl
(b) N_{2}
(c) SO_{2}
(d) protein
3. In the UV-Visible spectroscopy, the maximum energy required to excite an electron is from
(a) non-bonded electron
(b) π-electron
(c) sigma electron
(d) none of these
4. If the $\lambda \max$ of a compound shifts to shorter wavelength, the compound is said to exhibit
(a) bathochromic shift
(b) hypsochromic shift
(c) hyperchromic shift
(d) hypochromic shift
5. The sample in NMR absorbs frequency in \qquad region.
(a) microwave
(b) X-ray
(c) UV
(d) radio wave
6. NMR inactive nuclei is \qquad .
(a) ${ }^{12} \mathrm{C}$
(b) ${ }^{1} \mathrm{H}$
(c) ${ }^{14} \mathrm{~N}$
(d) ${ }^{31} \mathrm{P}$
7. $\mathrm{M}+2$ peaks are observed in the mass spectrum of the compounds containing one of the following atom
(a) fluorine
(b) iodine
(c) bromine
(d) nitrogen
8. Which Statement is correct
(a) Wave number is directly proportional to energy
(b) Wave length is directly proportional to frequency
(c) Wave length is directly proportional to energy
(d) Wave number is directly proportional to wave length
9. Relative to a 2D,3D experiment has a better
(a) S / N ratio
(b) baseline
(c) line shape
(d) resolution
10. The natural abundance of ${ }^{13} \mathrm{C}$ is about
(a) four times less than 1 H
(b) 0.11% of the total carbon
(c) 1.1% of the total carbon
(d) 99% of the total carbon

Fill in the blanks:

$11.400-800 \mathrm{~nm}$ is the wave length region of \qquad spectroscope.
12. The number of lines observed in ${ }^{13} \mathrm{C}$ spectrum of p -xylene are \qquad .
13. In NMR spectra for a triplet, the relative peak areas are in the ratio \qquad .
14. An organic compound containing an odd number of nitrogen atoms will have a molecular ion with an \qquad mass number.
15. The IR spectrum of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ shows sroung absorption at 3340 (broad), 2945, 2833 and $1030 \mathrm{~cm}^{-1}$. The band assigned to the OH stretching is \qquad .

Single line answer questions:

16. What is the selection rule of rotational spectra?
17. What is Born-Oppenheimer approximation?
18. How is the peak intensity arrived in NMR?
19. What is the even electron rule?
20. State Stevenson's rule.

SECTION - B
$(5 \times 8=40)$

Answer any FIVE questions:

21. Explain the inversion phenomena and Stark effect.
22. Calculate the $\lambda_{\max }$ for the following compounds.
(i)

(ii)

23. Explain the meaning of the terms chemical shift and spin-spin coupling with reference to NMR spectra.
24. Explain the following terms:
(a) base peak
(b) isotope peak
(c) molecular ion peak
25. Discuss how acetone and methyl acetate are identified by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR.
26. a) Explain nuclear overhauser effect.
b) Write briefly on 2D NMR technique.
27. a) Determine the term symbol for O_{2} molecule.
b) Explain vicinal and germinal coupling constants

SECTION - C

$(2 \times 20=40)$

Answer any TWO questions:

28. a.Explain the terms overtones and fundamental modes of vibrations ?
b. Explain Franck Condon principle.
c. Raman is complementary to IR. Explain with an example.
d. An organic compound of molecular formula $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}$ exhibited characteristic peaks at $\mathrm{m} / \mathrm{e} 120,105,77$ and 43 . Deduce the structure and explain the fragmentation pattern(5)
29. a. Illustrate with an example "spin decoupling" technique in NMR spectroscopy.
b. Give an account of the applications of ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopic techniques. (6)
c. Write short note on: (i) inductive cleavage (ii) Retro Diels-Alder cleavage.
30. a. Assign the structure and justify your answer for the compound, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$ with the following data
UV: $\lambda \max : 271 \mathrm{~nm} \quad$ IR: $v=1680 \mathrm{~cm}^{-1}$
1HNMR: $\delta 7.7(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.8(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.9(\mathrm{~s}, 3 \mathrm{H}), 2.4(\mathrm{~s}, 3 \mathrm{H})$
EIMS: m/z 150,135,107 and 43.
b. Explain Mclafferty rearrangement with suitable example.
c. Account for the trend in CO stretching frequency values:

$$
\begin{equation*}
\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]>\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}>\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-} \tag{5}
\end{equation*}
$$

