STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2015-2016 and thereafter)

MAJOR - CORE

COURSE

:

SUBJECT CODE :15PH/MC/SS54 B.Sc. DEGREE EXAMINATION NOVEMBER 2019 BRANCH III - PHYSICS FIFTH SEMESTER

PAPER TIME	: SOLID STAT : 3 HOURS	TE PHYSICS	MAX. MARKS :100			
	: JHOUKS	SECTION – A	MAX. MARKS 100			
ANSWER ALL QUESTIONS: (30x1=30)						
Choose the co	orrect answer:					
1. Which of the following covalent compounds conduct electricity						
a) Silica	b) Graphite	c) Diamond	d) Hydrogen chloride			
2. Condensed matter physics largely considers physical processes over what range of energies?						
a) µeV to e	eV b) meV to keV	V c) keV to MeV	d) MeV to GeV			
3. The solid which are brittle and hard are						
a) Ionic so	b) molecular	solid c) covaland sol	id d) metallic solid			
4. When electrons are trapped in the crystal lattice in place of anion vacancy, the defect in the crystal is known as						
a) Non-sto	oichiometric defect	b) F-Cer	b) F-Centre			
c) stoichio	metric defect	d) Frenk	d) Frenkel defect			
5. Burger's ve	ector changes with					
a) type of d	lislocation	b) Lengt	b) Length of dislocation			
c) Both typ	e and length of dislocat	tion d) None	d) None			
6. Stacking fa a) 0.01-0.1	the second seco	2 2	d) 0.1-10 J/m ²			
7. Which of th	he following is not an a	ssumption in Drude-Lor	entz theory of free electrons?			

- a) Metals contain free electrons that move through a lattice of positive ions.
- b) Electric field produced by lattice ions is considered to be uniform throughout the solid and hence neglected.
- c) Free electrons in a metal resemble molecules of a gas and therefore the laws of kinetic theory of gases are applicable to free electrons.
- d) The electrons are distributed among the energy levels according to Pauli's exclusion principle.

	/2/					
8. The resistivity of the material depends on which of the following.						
a) Length of the conducted	or b) A	b) Area of cross section of the conductor				
c) Temperature		d) All the above				
9. The quantized vibrations of lattice points in a solid are called						
a) Photons	b) Phonons	c) Protons	d) Partons			
10. Typical thickness of Bloch walls (nm).						
a) 0.1-1	b) 1-10	c) 10-50	d) 100			
11. Example for para-magnetic materials						
a) super conductors	b) alkali metals	c) transition metals	d) Ferrites			
12. Example for magnetic material used in data storage devices						
a) Permalloy	b) CrO ₂	c) Cunife	d) Alnico			
13. In superconductivity the conductivity of a material becomes						
a) Zero	b) Finite	c) Infinite d) N	c) Infinite d) None of the above			
14. The magnetic lines of force cannot penetrate the body of a superconductor, a phenomenon is known as						
a) Isotopic effect	b) BCS theory	c) Meissner effect	d) London theory			
15.There are three important lengths which enter the theory of superconductivity excepta) London penetration lengthb) Intrinsic coherence lengthc) Normal electron mean free lengthd) Mean path length						
Fill in the blanks: 16. The major binding force	• •					
 17. Negative screw dislocation is represented by 18. Electrical conductivity of insulators is the range 						
is determined to a second determined in the funge						

- 19. Typical size of magnetic domains _____
- 20. The energy required to break a cooper pair is ____ of the energy gap of superconductor.

State whether true or false:

21. Dry ice is solid carbon.

- 22. Line defects are thermodynamically stable
- 23. When an electric field is applied to the metal, the free electrons are accelerated and they move in the opposite direction of applied electric field.

- 24. Ferromagnetic materials does not exhibit magnetization even in the absence of magnetic field.
- 25. Cryotron is a magnetically operated current switch.

Answer briefly:

- 26. What type of bonding do freshwater fish need to be thankful for?
- 27. What is a Schottky defect more commonly known as?
- 28. Give an expression for Hall co-efficient.
- 29. What is meant by transition (or) critical temperature?
- 30. What is meant by persistent current?

SECTION – B

Answer any Five Questions:

- 31. Calculate the atomic vacancy concentration of Si crystal of room temperature (30°C) and at 800°C. The energy for vacancy formation of Si is 2.4 eV per atom. Atomic weight of Si is 28.09 and density of Si 2.33 x 10^3 kg/m³.
- 32. What is Schottky and Frenkel defect?
- 33. The thermal and electrical conductivities of Cu at 20°C are 390 W m⁻¹ K⁻¹ and 5.87 x 10^7 Ω^{-1} m⁻¹, respectively. Calculate the Lorentz number.
- 34. The Hall coefficient and conductivity of Cu at 300 K have measured to be -0.55×10^{-10} m³ A⁻¹s⁻¹ and 5.9 x 10⁷ mho per meter, respectively. Calculate the drift mobility of electrons in copper.
- 35. A paramagnetic material has a magnetic field intensity of 10^4 A m⁻¹, if the susceptibility of the material at room temperature is 3.7×10^{-3} calculate the magnetisation and flux density of the material.
- 36. The critical temperature for Hg with isotopic mass 199.5 at 4.184 K. Calculate the critical temperature when its mass changes to 203.4.
- 37. What are cooper pairs? Explain it.

Answer any Three Questions:

38. What is Hall effect? Derive an expression of Hall coefficient and mobility of charge carriers. Describe an experimental setup for the measurement of Hall coefficient.

SECTION – C

- 39. Explain different types of crystal imperfection with neat sketches.
- 40. Deduce mathematical expression for electrical conductivity and thermal conductivity of a conducting material and hence obtain Wiedemann-Franz law.
- 41. Discuss the domain structure in ferromagnetic materials. Show how the hysteresis curve is explained on the basis of domain theory.
- 42. What is Meissner effect? Prove that all superconductors are perfect diamagnetic in superconducting state.

(5x5=25)

(3x15=45)