STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2015–16 and thereafter)

SUBJECT CODE: 15MT/MC/VA34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2019 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE : MAJOR - CORE : VECTOR ANALYSIS AND APPLICATIONS PAPER TIME : 3 HOURS **MAX. MARKS : 100 SECTION-A**

Answer All the questions

(10 x 2 = 20)

1. If $\vec{A} = 5u^2\vec{i} + u\vec{j} - u^3\vec{k}$ and $\vec{B} = sinu\vec{i} - cosu\vec{j}$, find $\frac{d}{du}(\vec{A}\cdot\vec{B})$.

2. Suppose $\phi(x, y, z) = 3x^2y - y^3z^2$. Find $\nabla \phi$ at the point (1, -2, -1).

- 3. Determine the constant *a* so that the following vector is solenoidal. $\vec{V} = (-4x - 6v + 3z)\vec{i} + (-2x + v - 5z)\vec{i} + (5x + 6v + az)\vec{k}.$
- 4. Find a unit normal to the surface $2xy^2z x^2yz^2 = 1$ at the point (1,1,1).
- 5. Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = -3x^2\vec{\imath} + 5xy\vec{\jmath}$ and C is the curve in the xy-plane, $y = 2x^2$, from (0,0) to (1,2).
- 6. Define a conservative field.
- 7. Write down the Frenet-Serret formulae.
- 8. Define osculating plane.
- 9. State Stokes' theorem.
- 10. Evaluate $\iint_{S} \vec{r} \cdot \hat{n} \, dS$ where *S* is a closed surface.

- 11. A particle moves along the curve $x = 2t^2$, $y = t^2 4t$, z = -t 5 where t is the time. Find the components of its velocity and acceleration at time t = 1 in the direction $\vec{\iota} - 2\vec{\imath} + 2\vec{k}$.
- 12. Find the acute angle between the surfaces $xy^2z = 3x + z^2$ and $3x^2 y^2 + 2z = 1$ at the point (1, -2, 1).
- 13. Find the total work done in moving a particle in the force field given by $\vec{F} = z\vec{\iota} + z\vec{j} + z\vec{\iota}$ $x\vec{k}$ along the helix C is given by x = cost, y = sint, z = t from t = 0 to $t = \frac{\pi}{2}$.
- 14. Prove that a cylindrical coordinate system is orthogonal.
- 15. Use Gauss divergence theorem to evaluate $\iint_{S} \vec{F} \cdot \hat{n} \, dS$ where $\vec{F} = 4xz\vec{\iota} y^{2}\vec{j} + yz\vec{k}$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
- 16. Suppose \vec{A} and \vec{B} are differential functions of a scalar *u*.

Prove that (i) $\frac{d}{du} \left(\vec{A} \cdot \vec{B} \right) = \vec{A} \cdot \frac{d\vec{B}}{du} + \frac{d\vec{A}}{du} \cdot \vec{B}$, (ii) $\frac{d}{du} \left(\vec{A} \times \vec{B} \right) = \vec{A} \times \frac{d\vec{B}}{du} + \frac{d\vec{A}}{du} \times \vec{B}$.

17. Find the volume of the region common to the intersecting cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.

SECTION-C Answer any TWO questions (2 x 20 = 40)

- 18. (a) Let $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$. Show that (i) $\nabla \ln |\vec{r}| = \frac{\vec{r}}{r^2}$, (ii) $\nabla r^n = nr^{n-2}\vec{r}$. (10) (b) Show that (i) For a scalar ϕ , $\nabla \times (\nabla \phi) = 0$ (ii) For a vector \vec{A} , $\nabla \cdot (\nabla \times \vec{A}) = 0$. (10)
- 19. (a) Let $\vec{V} = (-4x 3y + az)\vec{i} + (bx + 3y + 5z)\vec{j} + (4x + cy + 3z)\vec{k}$. Find the constants *a*, *b* and *c* so that the vector \vec{V} is irrotational and hence express \vec{V} as the gradient of a scalar function. (10)
 - (b) Evaluate $\iint_{S} \vec{A} \cdot \hat{n} \, dS$ where $\vec{A} = 18z\vec{i} 12\vec{j} + 3y\vec{k}$ and *S* is the part of the plane 2x + 3y + 6z = 12, which is located in the first octant. (10)
- 20. (a) Evaluate $\iiint_V (x^2 + y^2 + z^2) dx dy dz$ where V is a sphere having center at the origin and radius equal to a. (10)
 - (b) Verify Green's theorem in the plane for $\oint_C (xy + y^2)dx + x^2dy$ where *C* is the closed curve of the region bounded by y = x and $y = x^2$. (10)