SUBJECT CODE: 15MT/MC/VA34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2019
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : MAJOR - CORE
PAPER : VECTOR ANALYSIS AND APPLICATIONS
TIME : 3 HOURS
MAX. MARKS : 100

SECTION-A

Answer All the questions
$(10 \times 2=20)$

1. If $\vec{A}=5 u^{2} \vec{\imath}+u \vec{\jmath}-u^{3} \vec{k}$ and $\vec{B}=\sin u \vec{\imath}-\cos u \vec{\jmath}$, find $\frac{d}{d u}(\vec{A} \cdot \vec{B})$.
2. Suppose $\phi(x, y, z)=3 x^{2} y-y^{3} z^{2}$. Find $\nabla \phi$ at the point $(1,-2,-1)$.
3. Determine the constant a so that the following vector is solenoidal. $\vec{V}=(-4 x-6 y+3 z) \vec{\imath}+(-2 x+y-5 z) \vec{\jmath}+(5 x+6 y+a z) \vec{k}$.
4. Find a unit normal to the surface $2 x y^{2} z-x^{2} y z^{2}=1$ at the point $(1,1,1)$.
5. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=-3 x^{2} \vec{\imath}+5 x y \vec{\jmath}$ and C is the curve in the $x y$-plane, $y=2 x^{2}$, from $(0,0)$ to $(1,2)$.
6. Define a conservative field.
7. Write down the Frenet-Serret formulae.
8. Define osculating plane.
9. State Stokes' theorem.
10. Evaluate $\iint_{S} \vec{r} \cdot \hat{n} d S$ where S is a closed surface.

SECTION-B

Answer any FIVE questions
11. A particle moves along the curve $x=2 t^{2}, y=t^{2}-4 t, z=-t-5$ where t is the time. Find the components of its velocity and acceleration at time $t=1$ in the direction $\vec{\imath}-2 \vec{\jmath}+2 \vec{k}$.
12. Find the acute angle between the surfaces $x y^{2} z=3 x+z^{2}$ and $3 x^{2}-y^{2}+2 z=1$ at the point ($1,-2,1$).
13. Find the total work done in moving a particle in the force field given by $\vec{F}=z \vec{\imath}+z \vec{\jmath}+$ $x \vec{k}$ along the helix C is given by $x=\operatorname{cost}, y=\sin t, z=t$ from $t=0$ to $t=\frac{\pi}{2}$.
14. Prove that a cylindrical coordinate system is orthogonal.
15. Use Gauss divergence theorem to evaluate $\iint_{S} \vec{F} \cdot \hat{n} d S$ where $\vec{F}=4 x z \vec{\imath}-y^{2} \vec{\jmath}+y z \vec{k}$ and S is the surface of the cube bounded by $x=0, x=1, y=0, y=1, z=0, z=1$.
16. Suppose \vec{A} and \vec{B} are differential functions of a scalar u.

Prove that (i) $\frac{d}{d u}(\vec{A} \cdot \vec{B})=\vec{A} \cdot \frac{d \vec{B}}{d u}+\frac{d \vec{A}}{d u} \cdot \vec{B}, \quad$ (ii) $\frac{d}{d u}(\vec{A} \times \vec{B})=\vec{A} \times \frac{d \vec{B}}{d u}+\frac{d \vec{A}}{d u} \times \vec{B}$.
17. Find the volume of the region common to the intersecting cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$.

SECTION-C

Answer any TWO questions

18. (a) Let $\vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$. Show that (i) $\nabla \ln |\vec{r}|=\frac{\vec{r}}{r^{2}}, \quad$ (ii) $\nabla r^{n}=n r^{n-2} \vec{r}$.
(b) Show that (i) For a scalar $\phi, \nabla \times(\nabla \phi)=0$
(ii) For a vector $\vec{A}, \nabla \cdot(\nabla \times \vec{A})=0$.
19. (a) Let $\vec{V}=(-4 x-3 y+a z) \vec{\imath}+(b x+3 y+5 z) \vec{\jmath}+(4 x+c y+3 z) \vec{k}$. Find the constants a, b and c so that the vector \vec{V} is irrotational and hence express \vec{V} as the gradient of a scalar function.
(b) Evaluate $\iint_{S} \vec{A} \cdot \hat{n} d S$ where $\vec{A}=18 z \vec{\imath}-12 \vec{\jmath}+3 y \vec{k}$ and S is the part of the plane $2 x+3 y+6 z=12$, which is located in the first octant.
20. (a) Evaluate $\iiint_{V}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$ where V is a sphere having center at the origin and radius equal to a.
(b) Verify Green's theorem in the plane for $\oint_{C}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.
