STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16 & thereafter)

SUBJECT CODE: 15MT/MC/RA55

B. Sc. DEGREE EXAMINATION, NOVEMBER 2019 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE: MAJOR - COREPAPER: PRINCIPLES OF REAL ANALYSISTIME: 3 HOURS

MAX. MARKS : 100

 $(10 \times 2 = 20)$

SECTION – A ANSWER ALL THE QUESTIONS

- 1. When do you say that a function is continuous at a point on the real line ?
- 2. Define Monotonic functions.
- 3. Define : Metric Space.
- 4. Define : Open set.
- 5. When is a subset of a metric space said to be bounded?
- 6. What is a Complete metric space ?
- 7. When is a metric space said to have the Heine Borel property ?
- 8. Define : Compact metric space.
- 9. Define upper sum and lower sum for a bounded function f.
- 10. State Rolle's Theorem.

SECTION – B (5×8=40) ANSWER ANY FIVE QUESTIONS

- 11. Show that if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then $\lim_{x\to a} [f(x) + g(x)] = L + M.$
- 12. If G_1 and G_2 are open subsets of the metric space M, prove that $G_1 \cap G_2$ is also open.
- 13. Prove that if the subset A of the metric space M is totally bounded, then A is bounded.
- 14. If (M, ρ) is a complete metric space and A is a closed subset of M, prove that (A, ρ) is also complete.
- 15. Let (M_1, ρ_1) be a compact metric space. If f is a continuous function from M_1 into a metric space (M_2, ρ_2) , prove that f is uniformly continuous on M_1 .
- 16. If f is a bounded function on [a, b], prove that $f \in R[a, b]$ if and only if for each $\epsilon > 0$, there exists a subdivision σ of [a, b] such that $U[f; \sigma] < L[f; \sigma] + \epsilon$.

17. If
$$f \in R[a, b]$$
, $g \in R[a, b]$, prove that $f + g \in R[a, b]$, and $\int_a^b f + g = \int_a^b f + \int_a^b g$.

 $(2 \times 20 = 40)$

SECTION – C ANSWER ANY TWO QUESTIONS

- 18. (a) Let f and g be real valued functions. Prove that if f is continuous at a and if g is continuous at f(a), then gof is continuous at a.
 - (b) Let (M₁, ρ₁) and (M₂, ρ₂) be metric spaces. Let f: M₁ → M₂. Prove that f is continuous on M₁ if and only if f⁻¹(G) is open in M₁, whenever G is open in M₂.
- 19. (a) Prove that if the metric space M has the Heine Borel property, then *M* is compact.(b) State and prove the Picard Fixed Point Theorem.

(10 + 10)

20. (a) State and prove the law of the mean.(b) State and prove the second fundamental theorem of calculus. (10 + 10)