STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2015-2016& thereafter)

SUBJECT CODE : 15MT/MC/GT34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2019 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	: MAJOR – CORE	
PAPER	: INTRODUCTION TO GRAPH THEORY	
TIME	: 3 HOURS	MAX. N

AX. MARKS: 100

(10X2=20)

SECTION – A ANSWER ALL THE QUESTIONS

- 1. Prove that every cubic graph has an even number of points.
- 2. Define adjacency matrix.
- 3. Show that the partition P = (7,6,5,4,3,2) is not graphic.
- 4. Define cutpoint of a graph.
- 5. Define Eulerian graph.
- 6. Prove that every Hamiltonian graph is 2-connected.
- 7. Show that $K_{3,3}$ is not planar.
- 8. Define crossing number.
- 9. Prove that every connected graph has a spanning tree.
- 10. Define functional digraph.

SECTION – B (5X8=40) ANSWER ANY FIVE QUESTIONS

11. Show that the following two graphs are not isomorphic.

12. Let G_1 be a (p_1, q_1) graph and G_2 be a (p_2, q_2) graph then prove that

(i) $G_1 + G_2$ is a $(p_1 + p_2, q_1 + q_2 + p_1p_2)$ graph

(ii) $G_1 \times G_2$ is a $(p_1 p_2, q_1 p_2 + q_2 p_1)$ graph.

- 13. Prove that a graph G is connected if and only if for any partition of V into subsets V_1 and V_2 there is a line of G joining a point of V_1 to a point of V_2 .
- 14. If G is a graph with $p \ge 3$ vertices and $\delta \ge \frac{p}{2}$, then prove that G is Hamiltonian.

- 15. Prove that every tree has a centre consisting of either one point or two adjacent points.
- 16. Prove that a graph can be embedded in the surface of a sphere if and only if it can be embedded in a plane.
- 17. If two digraphs are isomorphic then prove that the corresponding points have the same degree pair.

SECTION – C (2X20=40) ANSWER ANY TWO QUESTIONS

- 18. (a) Prove that the maximum number of lines among all p points graphs with no triangle is $\left[\frac{p^2}{4}\right]$.
 - (b) Prove that c(G) is well defined. (12+8)
- 19. Let G be a connected graph with at least three points. Then prove the following statements are equivalent
 - (i) G is a block.
 - (ii) Any two points of *G* lie on a common cycle.
 - (iii) Any point and any line of G lie on a common cycle.
 - (iv) Any two lines of *G* lie on a common cycle.
- 20. (a) State and prove Euler's formula.
 - (b) Let G = (p,q) be a tree then prove that (i) every two points of G are joined by a unique path (ii) G is connected and p = q + 1.
 (10+10)