STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086 (For candidates admitted during the academic year 2015-2016\& thereafter)

SUBJECT CODE : 15MT/MC/GT34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2019
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : MAJOR - CORE
PAPER : INTRODUCTION TO GRAPH THEORY TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A
 ANSWER ALL THE QUESTIONS

(10X2=20)

1. Prove that every cubic graph has an even number of points.
2. Define adjacency matrix.
3. Show that the partition $P=(7,6,5,4,3,2)$ is not graphic.
4. Define cutpoint of a graph.
5. Define Eulerian graph.
6. Prove that every Hamiltonian graph is 2-connected.
7. Show that $K_{3,3}$ is not planar.
8. Define crossing number.
9. Prove that every connected graph has a spanning tree.
10. Define functional digraph.

SECTION - B
(5X8=40)

ANSWER ANY FIVE QUESTIONS

11. Show that the following two graphs are not isomorphic.

12. Let G_{1} be a $\left(p_{1}, q_{1}\right)$ graph and G_{2} be a $\left(p_{2}, q_{2}\right)$ graph then prove that
(i) $G_{1}+G_{2}$ is a $\left(p_{1}+p_{2}, q_{1}+q_{2}+p_{1} p_{2}\right)$ graph
(ii) $G_{1} \times G_{2}$ is a $\left(p_{1} p_{2}, q_{1} p_{2}+q_{2} p_{1}\right)$ graph.
13. Prove that a graph G is connected if and only if for any partition of V into subsets V_{1} and V_{2} there is a line of G joining a point of V_{1} to a point of V_{2}.
14. If G is a graph with $p \geq 3$ vertices and $\delta \geq^{p} / 2$, then prove that G is Hamiltonian.
15. Prove that every tree has a centre consisting of either one point or two adjacent points.
16. Prove that a graph can be embedded in the surface of a sphere if and only if it can be embedded in a plane.
17. If two digraphs are isomorphic then prove that the corresponding points have the same degree pair.

SECTION - C
 ANSWER ANY TWO QUESTIONS

18. (a) Prove that the maximum number of lines among all p points graphs with no triangle is $\left[\frac{p^{2}}{4}\right]$.
(b) Prove that $c(G)$ is well defined.
19. Let G be a connected graph with at least three points. Then prove the following statements are equivalent
(i) G is a block.
(ii) Any two points of G lie on a common cycle.
(iii) Any point and any line of G lie on a common cycle.
(iv) Any two lines of G lie on a common cycle.
20. (a) State and prove Euler's formula.
(b) Let $G=(p, q)$ be a tree then prove that (i) every two points of G are joined by a unique path (ii) G is connected and $p=q+1$.

ahalahala

