STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16 & thereafter)

SUBJECT CODE: 15MT/MC/ED55

B. Sc. DEGREE EXAMINATION, NOVEMBER 2019 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE : MAJOR – CORE : ELEMENTS OF DIFFERENTIAL EQUATIONS PAPER TIME : 3 HOURS **MAX. MARKS : 100**

SECTION – A (10X2=20)**ANSWER ALL THE QUESTIONS**

- 1. Write the form of a particular solution the equation $ay'' + by' + cy = ke^{ax}$, where k is a constant, when e^{ax} and xe^{ax} are solutions of the complementary equation ay'' + by' + cy = 0.
- 2. If $y_1 = x$ is a solution of the second order differential equation $x^2y'' 3xy' + 3y =$ 0, and the general solution of $x^2y'' - 3xy' + 3y = 0$ obtained by the method of variation of parameters is $c_1 x + c_2 x^3$, then write the fundamental set of solutions of $x^2y'' - 3xy' + 3y = 0$.
- 3. If the motion of vibration string is critically damped, show that the motion is nonoscillatory.
- 4. Show that every point of y'' xy = 0 is an ordinary point.
- 5. Define irregular singular point.
- 6. Find the indicial polynomial of $x^2y'' xy' 8y = 0$.
- 7. Eliminate the arbitrary function from $z = f(x^2 + y^2)$.
- 8. Obtain the complete integral of $z = px + qy + \sqrt{1 + p^2 + q^2}$.
- 9. Solve $x^2p + y^2q = z^2$. 10. Solve $\frac{\partial^2 z}{\partial x \partial y} = 0$.

SECTION – B ANSWER ANY FIVE QUESTIONS

(5X8=40)

- 11. Find a particular solution of $9y'' + 6y' + y = e^{-x/3}(2 4x + 4x^2)$.
- 12. If $y = \sum_{n=1}^{\infty} a_n x^n$ is a series solution of the equation
- $(1 + 2x^2)y'' + 10xy' + 8y = 0, y(0) = 2, y'(0) = -3$, then compute a_{0,a_1}, a_{3,a_4} . 13. Find the singular points of the Legendre's equation

 $(1 - x^2)y'' - 2xy' + \alpha(\alpha + 1)y = 0$. Also find their nature.

- 14. Find a fundamental set of Frobenius solutions of $x^{2}(2-x^{2})y'' - x(3+4x^{2})y' + (2-2x^{2})y = 0.$
- 15. Find a particular solution of $y'' 3y' + 2y = \frac{4}{1 + e^{-x}}$ by using variation of parameters.
- 16. Solve $p(1+q^2) = q(z-1)$.

17. By reducing the equation $z^4q^2 - z^2p = 1$ into standard form and solve it.

(2X20=40)

SECTION – C ANSWER ANY TWO QUESTIONS

- 18. (a) Find the general solution of the equation $(2x + 1)y'' - 2y' - (2x + 3)y = (2x + 1)^2$, given that $y_1 = e^{-x}$ is a solution of its complementary function.
 - (b) Find a power series in x for the general solution of $(1 + x^2)y'' + 6xy' + 6y = 0$.
- 19. (a) Rewrite the system $y_1' = 2y_1 + 4y_2y_2' = 4y_1 + 2y_2$ in matrix form and verify that $y = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{6t} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t}$ satisfies the system for any choice of c_1 and c_2 .
 - (b) Find a fundamental set of Frobenius solutions of $x^2(3+x)y'' + 5x(1+x)y' (1-4x)y = 0$. Also derive explicit formula for the coefficients.
- 20. (a) Find the complete and singular solutions of $\frac{z}{qp} = \frac{x}{q} + \frac{y}{p} + \sqrt{pq}$. (b) Solve $z(xp - yq) = y^2 - x^2$.