STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2015-16 \& thereafter)

SUBJECT CODE : 15MT/MC/ED55

B. Sc. DEGREE EXAMINATION, NOVEMBER 2019
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER

COURSE	: MAJOR - CORE	
PAPER	$:$	ELEMENTS OF DIFFERENTIAL EQUATIONS
TIME	$:$	3 HOURS

SECTION - A
 ANSWER ALL THE QUESTIONS

(10X2=20)

1. Write the form of a particular solution the equation $a y^{\prime \prime}+b y^{\prime}+c y=k e^{a x}$, where k is a constant, when $e^{a x}$ and $x e^{a x}$ are solutionsof the complementary equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.
2. If $y_{1}=x$ is a solution of the second order differential equation $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=$ 0 , and the general solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0$ obtained by the method of variation of parameters is $c_{1} x+c_{2} x^{3}$, then write the fundamental set of solutions of $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0$.
3. If the motion of vibration string is critically damped, show that the motion is nonoscillatory.
4. Show that every point of $y^{\prime \prime}-x y=0$ is an ordinary point.
5. Define irregular singular point.
6. Find the the indicial polynomialof $x^{2} y^{\prime \prime}-x y^{\prime}-8 y=0$.
7. Eliminate the arbitrary function from $z=f\left(x^{2}+y^{2}\right)$.
8. Obtain the complete integral of $z=p x+q y+\sqrt{1+p^{2}+q^{2}}$.
9. Solve $x^{2} p+y^{2} q=z^{2}$.
10. Solve $\frac{\partial^{2} z}{\partial x \partial y}=0$.

SECTION - B
 ANSWER ANY FIVE QUESTIONS

(5X8=40)
11. Find a particular solution of $9 y^{\prime \prime}+6 y^{\prime}+y=e^{-x / 3}\left(2-4 x+4 x^{2}\right)$.
12. If $y=\sum_{n=1}^{\infty} a_{n} x^{n}$ is a series solution of the equation $\left(1+2 x^{2}\right) y^{\prime \prime}+10 x y^{\prime}+8 y=0, y(0)=2, y^{\prime}(0)=-3$, then compute $a_{0}, a_{1}, a_{3}, a_{4}$.
13. Find the singular points of the Legendre's equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0$. Also find their nature.
14. Find a fundamental set of Frobenius solutions of $x^{2}\left(2-x^{2}\right) y^{\prime \prime}-x\left(3+4 x^{2}\right) y^{\prime}+\left(2-2 x^{2}\right) y=0$.
15. Find a particular solution of $y^{\prime \prime}-3 y^{\prime}+2 y=\frac{4}{1+e^{-x}}$ by using variation of parameters.
16. Solve $p\left(1+q^{2}\right)=q(z-1)$.
17. By reducing the equation $z^{4} q^{2}-z^{2} p=1$ into standard form and solve it.

SECTION - C

$(2 \times 20=40)$

ANSWER ANY TWO QUESTIONS

18. (a) Find the general solution of the equation
$(2 x+1) y^{\prime \prime}-2 y^{\prime}-(2 x+3) y=(2 x+1)^{2}$, given that $y_{1}=e^{-x}$ is a solution of its complementary function.
(b) Find a power series in x for the general solution of $\left(1+x^{2}\right) y^{\prime \prime}+6 x y^{\prime}+6 y=0$.
19. (a) Rewrite the system $y_{1}{ }^{\prime}=2 y_{1}+4 y_{2} y_{2}{ }^{\prime}=4 y_{1}+2 y_{2}$ in matrix form and verify that $y=c_{1}\binom{1}{1} e^{6 t}+c_{2}\binom{1}{-1} e^{-2 t}$ satisfies the system for any choice of c_{1} and c_{2}.
(b) Find a fundamental set of Frobenius solutions of $x^{2}(3+x) y^{\prime \prime}+5 x(1+x) y^{\prime}-(1-4 x) y=0$. Also derive explicit formula for the coefficients.
20. (a) Find the complete and singular solutions of $\frac{z}{q p}=\frac{x}{q}+\frac{y}{p}+\sqrt{p q}$.
(b) Solve $z(x p-y q)=y^{2}-x^{2}$.
