SUBJECT CODE :15MT/MC/AS55

B. Sc. DEGREE EXAMINATION, NOVEMBER 2019
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER

COURSE : MAJOR - CORE
PAPER : ALGEBRAIC STRUCTURES
TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

Answer all questions: $(10 \times 2=20)$

1. Define abelian group. Give an example of a group which is not abelian.
2. Define cyclic group with an example.
3. If G is a finite group whose order is a prime number p, prove that G is a cyclic group.
4. Show that every subgroup of an abelian group is normal.
5. Define an automorphism of a group G.
6. Find the orbits and cycles of the permutation. $\left.\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 6 & 4 & 2 & 5 & 1 & 7 & 8 & 9\end{array}\right)$.
7. When do you say that a commutative is an integral domain? Give an example.
8. Define a homomorphism Φ of one ring R into another R^{\prime}. Specify $\Phi(0)$ and $\Phi(-a)$ for each $a \in R$.
9. If U is an ideal of R and $1 \in U$, prove that $U=R$.
10. Define a maximal ideal and a prime ideal.

SECTION - B

Answer any five questions:
11. Show that $a, b \in G$, then $(a * b)^{2}=a^{2} * b^{2}$ if and only if G is abelian.
12. For all $\mathrm{a} \in \mathbb{Z} G$ Prove that $H a=\{x \in G \mid a \equiv x(\bmod H)\}$.
13. Prove that intersection of two normal subgroups of G is also a normal subgroup.
14. State and prove Lagrange's theorem.
15. If G is a group, prove that the set of automorphisms of G is also a group.
16. Prove that every finite integral domain is a field.
17. If U and V are ideals of R and let $U+V=\{u+v \mid u \in U, v \in V\}$, prove that $U+V$ is also anideal.

SECTION - C

Answer any two questions:

18. (a) If H and K are finite subgroups of G of orders $o(H)$ and $o(K)$ respectively, prove that $\mathrm{o}(\mathrm{HK})=\frac{\mathrm{o}(\mathrm{H}) . \mathrm{o}(\mathrm{K})}{\mathrm{o}(\mathrm{H} \cap \mathrm{K})}$.
(b) Let Φ be a homomorphism if G onto G with kernel K. Prove that $G / K \approx G$. (10+10)
19. (a) State and prove Cayley's theorem.
(b) Let R be a Commutative Ring with unit element whose only ideals are $\{0\}$ and R itselfprove that R is a field.
20. Prove that every integral domain can be imbedded in a field.
