STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086 (For candidates admitted during the academic year 2015-2016 and thereafter)

SUBJECT CODE : 15MT/AC/ST35

B. Sc. DEGREE EXAMINATION, NOVEMBER 2019
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : ALLIED - CORE
PAPER : MATHEMATICAL STATISTICS - I
TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A
 ANSWER ALL THE QUESTIONS

1. Write the sample space in tossing two coins.
2. A single die is tossed once. Find the probability of a 2 or 5 turning up.
3. A coin is tossed twice. Let x represent the number of heads that come up. Find the probability function corresponding to x.
4. A continuous random variable x has the following $\operatorname{pdf} f(x)=\left\{\begin{array}{cc}3 x^{2}, & 0<x<1 \\ 0, & \text { otherwise }\end{array}\right.$. Verify that it is a pdf.
5. A random variable x has $E(x)=2$ and $E\left(x^{2}\right)=8$. Find $\operatorname{Var}(x)$ and σ_{x}
6. A discrete random variable has the probability function given below. Find its characteristic function.

$$
\begin{array}{llcc}
x: & : & -1 & 1 \\
p(x): & 1 / 2 & 1 / 2
\end{array}
$$

7. n a binomial distribution the mean and standard deviation are 12 and 2 respectively. Find n and p.
8. Give two examples of poisson distribution.
9. Under what conditions normal distribution is a limiting form of binomial distribution?
10. Find the area under the standard normal curve which lie to the right of $z=0.27$.

SECTION - B
 ANSWER ANY FIVE QUESTIONS

(5X8=40)
11. What is the probability that a leap year selected at random will contain either 53 Thursdays or 53 Fridays?
12. Given that $P(A)=\frac{3}{8}, P(B)=\frac{5}{8}$ and $P(A \cup B)=\frac{3}{4}$. Find $P(A / B)$ and $P(B / A)$. Show whether A and B are independent.
13. For the probability distribution

x	0	1	2	3
$f(x)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Find the distribution function $f(x)$ for the random variable X and graph this distribution.
14. The joint density function of the random variable X and Y is given by $f(x, y)=\left\{\begin{array}{ll}8 x y & 0 \leq x \leq 1,0 \leq y \leq x \\ & 0 \\ \text { otherwise }\end{array}\right.$. Find (i) the marginal density of $x \quad$ (ii) the conditional density of X
15. A continuous random variable X has probability density function $f(x)=\left\{\begin{array}{cc}2 e^{-2 x}, & x>0 \\ 0, & x \leq 0\end{array}\right.$. Find $E(x)$ and $\operatorname{Var}(x)$.
16. It is known from past experience that in a certain plant there are an average 4 industirial accidents per month. Find the probability that in a given year there will be (i)less than 4 accidents (ii) No accidents .Assume poisson distribution. (Given $e^{-4}=0.0183$).
17. Assume the mean height of children to be 68.22 cm . with a variance of 10.8 cm . How many children would you expect to be over 72 cm tall?

SECTION - C ANSWER ANY TWO QUESTIONS

$(2 \times 20=40)$
18. a) A card is drawn at random from an ordinary deck of 52 playing cards. Find the probability that it is (a) a ten or a spade (b) neither a four nor a club
b) Urn I has 2 white and 3 black balls, Urn II 4 white and 1 black and Urn III 3 white and 4 black. An urn is selected at random and a ball drawn at random is found to be white. Find the probability that Urn I was selected.
19. a) The joint density function of two continuous random variables X and Y is $f(x, y)=\left\{\begin{array}{cc}c x y & 0<x<4,1<y<5 \\ 0 & \text { otherwise }\end{array}\right.$.
(i) Find the value of c
(ii) Find $P(1<X<2,2<Y<3)$
(b) Find the moment generating function of the random variable x having density Function $f(x)=\left\{\begin{array}{cc}x / 2 & 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{array}\right.$.Also find the first four moments about the Origin.
20. a) The sum of mean and variance of a binomial distribution is 4.8 for 5 trials. Find the distribution.
b) A machine produces on an average 20% defective bolts . A batch is accepted if a sample of 5 bolts taken from that batch contains no defective and rejected if the sample contains 3 or more defectives. In other cases a second sample is taken. What is the probability that the second sample is required?
c) In a normal distribution 31% of the items are under 45 and 8% are over 64 . Find the mean and standard deviation of the distribution.

