B.COM (A\&F). DEGREE EXAMINATION NOVEMBER 2019
 ACCOUNTING AND FINANCE
 FIRST SEMESTER

COURSE	$:$	ALLIED - CORE
PAPER	$:$	STATISTICS FOR BUSINESS DECISIONS
TIME	$:$	3 HOURS

MAX. MARKS: 100

SECTION - A

ANSWER ALL QUESTIONS:

1. Number of students of seven colleges in a city are: $385,1748,1935,786,2874,2865$ and 2108. Find the median number of students.
2. Find the coefficient of skewness from the following: Difference of two quartiles $=8$, sum of two quartiles $=22$, median $=11$ and mean $=8$.
3. State any two parametric statistical tests.
4. Define the variance ratio test.
5. Give an example of a nominal variable.
6. Write the number of degrees of freedom in 3×3 contingency table
7. If $b_{x y}=0.5, r=0.8$ and $\sigma_{y}=16$. find σ_{x}
8. The two equations are $8 x-10 y=66,40 x-18 y=214$. Find the mean values of X and Y.
9. What are the components of time series?
10. Given the trend equation $Y=45+2.6 \mathrm{X}$. Origin is 2007 , X unit $=1$ year. Shift the origin to 2010 and get the trend equation.

SECTION - B

ANSWER ANY FIVE QUESTIONS:
11. Calculate the mean and standard deviation of the following data:

Age(years)	$25-30$	$30-35$	$35-40$	$40-45$	$45-50$	$50-55$
No of workers	70	51	47	31	29	22

12. Explain the procedure for testing hypothesis
13. Ten specimens of copper wires drawn from a large lot have the following breaking strength (in kg.weight):578, 572, 570, 568, 572, 571, 570, 572, 596, 548. Test whether the mean breaking strength of the lot may be taken to be 578 kg .wt.
14. For the following contingency table (a) state the null and alternative hypotheses (b) calculate the Chi-square statistic.

Income level

Attendance	Low	Middle	High
Never	27	48	15
Occasional	25	63	14
Regular	22	74	12

15. The following correlation coefficients were obtained: $\mathrm{r}_{12}=0.77, \mathrm{r}_{13}=0.72$ and $\mathrm{r}_{23}=0.52$. Find the partial correlation coefficient $\mathrm{r}_{12.3}$ and multiple correlation coefficient $\mathrm{R}_{1.23}$.
16. For certain data, $\mathrm{Y}=1.2 \mathrm{X}$ and $\mathrm{X}=0.6 \mathrm{Y}$ are the regression lines. Compute the value of correlation coefficient and $\frac{\sigma_{x}}{\sigma_{y}}$.
17. Explain seasonal variations in time series.

SECTION - C

ANSWER ANY TWO QUESTIONS:

18. (a) Calculate mean deviation from mean and its coefficient from the following series:

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of students	5	8	15	16	6

(b) Calculate Karl Pearson's coefficient of correlation n from the following data

X	105	111	104	112	118	98	116	103	116	112
Y	62	64	53	60	72	56	68	60	69	65

19. A tea company appoints four salesmen A, B, C and D and observes their sales in three seasons - summer, winter and monsoon. The sakes in lakhs are given in the following table.

Seasons	Salesmen			
	A	B	C	D
Summer	36	36	21	35
Winter	28	29	31	32
Monsoon	26	28	29	29

(i) Do the salesmen significantly differ in their performance?
(ii) Is there significant difference between the seasons?
20. (i) Two random samples were drawn from two normal populations and their values are:

A; 666775768284889092
B; 6466747882858792939597
Test whether the two populations have the same variance.
(ii)The following table gives the number of aircraft accidents that occurred during the seven days of the week. Find whether the accidents are uniformly distributed over the week.

Days	$:$	Mon	Tue	Wed	Thur	Fri
Sat						
No. of accidents:	14	18	12	11	15	14

21. Find the multiple linear regression equation of X_{1} on X_{2} and X_{3} from the following data:

$X_{1}: 4$	6	7	9	13	15
$X_{2}: 15$	12	8	6	4	3
$X_{3}: 30$	24	20	14	10	4

