STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086 (For candidates admitted during the academic year 2015-16 and thereafter)

SUBJECT CODE: 15MT/MC/VA34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2018
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : MAJOR - CORE
PAPER : VECTOR ANALYSIS AND APPLICATIONS TIME : 3 HOURS

MAX. MARKS : 100

SECTION-A

Answer All the questions
$(10 \times 2=20)$

1. Find a unit normal vector to the surface $x=t, y=t^{2}, z=t^{3}$ at $t=1$.
2. If $\phi=r^{2} e^{-r}$. Show that $\operatorname{grad} \phi=(2-r) e^{-r} r$
3. Prove that curl grad $\phi=0$.
4. Prove that $A \times \frac{d^{2} B}{d t^{2}}-\frac{d^{2} A}{d t^{2}} \times B=\frac{d}{d t}\left(A \times \frac{d B}{d t}-\frac{d A}{d t} \times B\right)$.
5. If $\vec{r}=\vec{a} \operatorname{Cos} \omega t+\vec{b} \operatorname{Sin} \omega t$. show that $\vec{r} \times \frac{d \vec{r}}{d t}=\omega(\vec{a} \times \vec{b})$ and $\frac{d^{2} \vec{r}}{d t^{2}}=-\omega^{2} \vec{r}$
6. If ϕ and Ψ are scalar point functions then prove that $\nabla\left(\frac{\phi}{\Psi}\right)=\frac{\Psi \nabla \phi-\phi \nabla \Psi}{\Psi^{2}}$.
7. Describe the coordinate surfaces and coordinate curves for cylindrical coordinates.
8. Define Osculating plane.
9. State Green's theorem.
10. Show that the area bounded by a simple closed curve C is given by $\frac{1}{2} \int_{c}(x d y-y d x)$.

SECTION-B
 Answer any FIVE questions

11. If $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$ and $r=|\vec{r}|$. Prove that
i) $\quad \nabla\left(\frac{1}{r}\right)=\frac{-\vec{r}}{r^{3}}$
ii) $\quad \nabla f(r)=f^{\prime}(r) \frac{r}{r}=f^{\prime}(r) \nabla r$.
12. A field \vec{F} is of the form $\vec{F}=\left(6 x y+z^{3}\right) \vec{i}+\left(3 x^{2}-z\right) \vec{j}+\left(3 x z^{2}-y\right) \vec{k}$. Show that \vec{F} is conservative field and find a function ϕ such that $\vec{F}=\nabla \phi$.
13. Find $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=\left(x^{2}-y^{2}\right) \vec{i}+2 x y \vec{j}$ and C is the square bounded by the coordinates axes and the lines $x=a$ and $=a$.
14. Find the constants a, b and c so that $\vec{V}=(-4 x-3 y+a z) \hat{i}+(b x+3 y+5 z) \hat{j}+(4 x+c y+3 z) \hat{k}$ is irrotational. Also find $\nabla \cdot \vec{V}$.
15. Verify Stoke's theorem when $\vec{F}=y \vec{i}+z \vec{j}+x \vec{k}$ and surface S is the part of the sphere $x^{2}+y^{2}+z^{2}=1$ along the $x y$ plane.
16. Evaluate $\iint_{S}\left(y^{2} z \vec{i}+z^{2} \vec{x} \vec{j}+x^{2} y \vec{k}\right) d \vec{S}$ where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ lying in the positive octant.
17. Find $\iiint_{V} \vec{F} d v$ where $\vec{F}=2 x z \vec{i}-x \vec{j}+y^{2} \vec{k}$ and V is the volume of the region enclosed by the cylinder $x^{2}+y^{2}=a^{2}$ between the planes $z=0, z=c$.

SECTION-C
 Answer any TWO questions

$(2 \times 20=40)$
18. a) Find the equation of the tangent plane and normal to the surface $x y z=4$ at the point $(1,2,2)$.
b) If \vec{u} and \vec{v} be vector point functions. Then prove that $\nabla \times(\vec{u} \times \vec{v})=(\vec{v} \cdot \nabla) \vec{u}-(\nabla \cdot \vec{u}) \vec{v}-[(\vec{u} \cdot \nabla) \vec{v}-(\nabla \cdot v) \vec{u}]$
19. a) Evaluate $\iint_{S} \vec{F} \cdot \vec{n} d s$ where $\vec{F}=18 z \vec{i}-12 \vec{j}+3 y \vec{k}$ and S is the part of the plane $2 x+3 y+6 z=12$ which is located in the first quadrant.
b) If $\vec{A}=2 y z \hat{i}-x^{2} y \hat{j}+x z^{2} \hat{k}$ and $\phi=2 x^{2} y z^{3}$ then find (i) $(\vec{A} \cdot \nabla) \phi$ and (ii) $(\vec{A} \times \nabla) \phi$.
20. a) Verify divergence theorem for the function $\vec{F}=4 x \vec{i}-2 y^{2} \vec{j}+z^{2} \vec{k}$ taken over the region bounded by $x^{2}+y^{2}=4, z=0, z=3$
b) Verify Stokes theorem for $\vec{F}=(2 x-y) \vec{i}-y z^{2} \vec{j}-y^{2} z \vec{k}$ where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C its boundary.

AAAAAAAAA

