STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2015–16 and thereafter)

SUBJECT CODE: 15MT/MC/VA34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2018 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	:	MAJOR – CORE			
PAPER	:	VECTOR ANALYSIS AND APPLICATIONS			
TIME	:	3 HOURS	MAX. MARKS :	100	

SECTION-A Answer All the questions (10 x 2 = 20)

- 1. Find a unit normal vector to the surface x = t, $y = t^2$, $z = t^3$ at t = 1.
- 2. If $\phi = r^2 e^{-r}$. Show that $grad \phi = (2 r) e^{-r} r$
- 3. Prove that $curl grad \phi = 0$.
- 4. Prove that $A \times \frac{d^2 B}{dt^2} \frac{d^2 A}{dt^2} \times B = \frac{d}{dt} \left(A \times \frac{dB}{dt} \frac{dA}{dt} \times B \right)$.
- 5. If $\vec{r} = \vec{a} \cos \omega t + \vec{b} \sin \omega t$, show that $\vec{r} \times \frac{\vec{d} \cdot \vec{r}}{dt} = \omega (\vec{a} \times \vec{b})$ and $\frac{\vec{d} \cdot \vec{r}}{dt^2} = -\omega^2 \vec{r}$

6. If $\phi and \Psi$ are scalar point functions then prove that $\nabla \left(\frac{\phi}{\Psi}\right) = \frac{\Psi \ \nabla \phi - \phi \ \nabla \Psi}{\Psi^2}$.

7. Describe the coordinate surfaces and coordinate curves for cylindrical coordinates.

- 8. Define Osculating plane.
- 9. State Green's theorem.

10. Show that the area bounded by a simple closed curve C is given by $\frac{1}{2} \prod_{c} (xdy - ydx)$.

SECTION-B Answer any FIVE questions (5 x 8 = 40)

11. If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and $r = |\vec{r}|$. Prove that

i) $\nabla\left(\frac{1}{r}\right) = \frac{-r}{r^3}$

ii)
$$\nabla f(r) = f'(r) \frac{r}{r} = f'(r) \nabla r$$
.

12. A field \vec{F} is of the form $\vec{F} = (6xy + z^3)\vec{i} + (3x^2 - z)\vec{j} + (3xz^2 - y)\vec{k}$. Show that \vec{F} is conservative field and find a function ϕ such that $\vec{F} = \nabla \phi$.

- 13. Find $\vec{\int F} \cdot \vec{dr}$ where $\vec{F} = (x^2 y^2)\vec{i} + 2xy\vec{j}$ and C is the square bounded by the
 - coordinates axes and the lines x = a and = a.
- 14. Find the constants a, b and c so that $\vec{V} = (-4x - 3y + az)\hat{i} + (bx + 3y + 5z)\hat{j} + (4x + cy + 3z)\hat{k}$ is irrotational. Also find $\nabla \cdot \vec{V}$.
- 15. Verify Stoke's theorem when $\vec{F} = y\vec{i} + z\vec{j} + x\vec{k}$ and surface S is the part of the sphere $x^2 + y^2 + z^2 = 1$ along the xy plane.
- 16. Evaluate $\iint (y^2 z i + z^2 x j + x^2 y k) ds$ where S is the surface of the sphere
- $x^{2} + y^{2} + z^{2} = a^{2}$ lying in the positive octant. 17. Find $\iiint \vec{F} \, dv$ where $\vec{F} = 2xz\vec{i} x\vec{j} + y^{2}\vec{k}$ and *V* is the volume of the region

enclosed by the cylinder $x^2 + y^2 = a^2$ between the planes z = 0, z = c.

SECTION-C Answer any TWO questions $(2 \ge 20 = 40)$

- 18. a) Find the equation of the tangent plane and normal to the surface xyz = 4 at the point (1,2,2).
 - b) If \vec{u} and \vec{v} be vector point functions. Then prove that $\nabla \times (u \times v) = (v \cdot \nabla) u - (\nabla \cdot u) v - [(u \cdot \nabla) v - (\nabla \cdot v) u]$
- 19. a) Evaluate $\iint \vec{F} \cdot \vec{n} \, ds$ where $\vec{F} = 18 z \vec{i} 12 \vec{j} + 3 y \vec{k}$ and S is the part of the plane
 - 2x + 3y + 6z = 12 which is located in the first quadrant.
 - b) If $\vec{A} = 2y_2\hat{i} x^2y_1\hat{i} + x_2\hat{k}$ and $\phi = 2x^2y_2\hat{i}$ then find (i) $(\vec{A} \cdot \nabla)\phi$ and (ii) $(\vec{A} \times \nabla)\phi$.
- 20. a) Verify divergence theorem for the function $\vec{F} = 4x\vec{i} 2y^2\vec{j} + z^2\vec{k}$ taken over the region bounded by $x^{2} + y^{2} = 4, z = 0, z = 3$
 - b) Verify Stokes theorem for $\vec{F} = (2x y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and *C* its boundary.

###