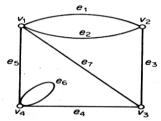
STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2015-2016& thereafter)

SUBJECT CODE: 15MT/MC/GT34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2018 BRANCH I - MATHEMATICS THIRD SEMESTER


COURSE	:	MAJOR – CORE
PAPER	:	INTRODUCTION TO GRAPH THEORY
TIME	:	3 HOURS

MAX. MARKS: 100

SECTION – A (10X2=20)

ANSWER ALL THE QUESTIONS

- 1. Prove that $\delta \leq \frac{2q}{p} \leq \Delta$ for (p,q) graph.
- 2. Find the incidence matrix for the following graph.

- 3. Check whether the partition P = (7, 6, 5, 4, 3, 2) is graphical or not.
- 4. Define cut point and bridge of a graph.
- 5. For what values of *m* and *n* is $K_{m,n}$ eulerian?
- 6. Prove that every hamiltonian graph is 2-connected.
- 7. Prove that $K_{3,3} e$ is planar for every edge e.
- 8. Define crossing number of a graph.
- 9. Draw all trees with 6 vertices.
- 10. When is a digraph said to be strongly connected?

SECTION – B (5X8=40)

ANSWER ANY FIVE QUESTIONS

- 11. (a) Prove that any self complementary graph has 4n or 4n + 1 points. (4)
 - (b) Define composition of two graphs with a suitable example. (4)
- 12. Prove that a closed walk of odd length contains a cycle.
- 13. Let *G* be a connected graph with at least three points. Prove that if *G* is a block, then any two points of *G* lie on a common cycle.

14. Let G be a connected graph.

- (a) Prove that if G is eulerian, then every point of G has even degree.
- (b) Prove that if the set of edges of *G* can be partitioned into cycles, then *G* is eulerian.
- 15. Prove that K_5 is non-planar.
- 16. Prove that every tree has a centre consisting of either one point or two adjacent points.
- 17. Prove that the $(i, j)^{th}$ entry of A^n is the number of walks of length *n* from v_i to v_j .

SECTION – C (2X20=40)

ANSWER ANY TWO QUESTIONS

- 18. Prove that the maximum number of lines among all *p* point graphs with no triangles is $\left[\frac{p^2}{4}\right]$.
- 19. (a) Prove that a graph *G* with at least two points is bipartite if and only if all its cycles are of even length.
 - (b) If G is a graph with $p \ge 3$ vertices and $\delta \ge p/2$, Prove that G is hamiltonian.
- 20. (a) State and prove Euler's theorem for a connected planar graph.

(b) Prove that a weak digraph *D* is eulerian if and only if every point of D has equal indegree and outdegree.