STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086 (For candidates admitted during the academic year 2015-2016\& thereafter)

SUBJECT CODE : 15MT/MC/GT34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2018
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE	: MAJOR - CORE
PAPER	$:$ INTRODUCTION TO GRAPH THEORY
TIME	$: 3$ HOURS

MAX. MARKS : 100
SECTION - A
(10X2=20)

ANSWER ALL THE QUESTIONS

1. Prove that $\delta \leq \frac{2 q}{p} \leq \Delta$ for (p, q) graph.
2. Find the incidence matrix for the following graph.

3. Check whether the partition $P=(7,6,5,4,3,2)$ is graphical or not.
4. Define cut point and bridge of a graph.
5. For what values of m and n is $K_{m, n}$ eulerian?
6. Prove that every hamiltonian graph is 2 -connected.
7. Prove that $K_{3,3}-e$ is planar for every edge e.
8. Define crossing number of a graph.
9. Draw all trees with 6 vertices.
10. When is a digraph said to be strongly connected?
SECTION - B

ANSWER ANY FIVE QUESTIONS

11. (a) Prove that any self complementary graph has $4 n$ or $4 n+1$ points.
(b) Define composition of two graphs with a suitable example.
12. Prove that a closed walk of odd length contains a cycle.
13. Let G be a connected graph with at least three points. Prove that if G is a block, then any two points of G lie on a common cycle.
14. Let G be a connected graph.
(a) Prove that if G is eulerian, then every point of G has even degree.
(b) Prove that if the set of edges of G can be partitioned into cycles, then G is eulerian.
15. Prove that K_{5} is non-planar.
16. Prove that every tree has a centre consisting of either one point or two adjacent points.
17. Prove that the $(i, j)^{t h}$ entry of A^{n} is the number of walks of length n from v_{i} to v_{j}.
SECTION - C
($2 \times 20=40$)

ANSWER ANY TWO QUESTIONS

18. Prove that the maximum number of lines among all p point graphs with no triangles is $\left[\frac{p^{2}}{4}\right]$.
19. (a) Prove that a graph G with at least two points is bipartite if and only if all its cycles are of even length.
(b) If G is a graph with $p \geq 3$ vertices and $\delta \geq p / 2$, Prove that G is hamiltonian.
20. (a) State and prove Euler's theorem for a connected planar graph.
(b) Prove that a weak digraph D is eulerian if and only if every point of D has equal indegree and outdegree.
