STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2015-16 \& thereafter)

SUBJECT CODE : 15MT/MC/ED55

B. Sc. DEGREE EXAMINATION, NOVEMBER 2018
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER
 PAPER : ELEMENTS OF DIFFERENTIAL EQUATIONS
 MAX. MARKS : 100

COURSE : MAJOR - CORE TIME : 3 HOURS

SECTION - A

(10X2=20)

ANSWER ALL THE QUESTIONS

1. Find the particular solution of $y^{\prime \prime}-7 y^{\prime}+12 y=4 e^{2 x}$.
2. Find the particular solution of $y^{\prime \prime}-2 y^{\prime}+y=5 \cos 2 x+10 \sin 2 x$.
3. Suppose a 64 lb weight stretches a spring 6 inches in equilibrium and a dashpot provides a damping force of clb for each $\mathrm{ft} / \mathrm{sec}$ of velocity. Write the equation of motion of the object and determine the value of c for which the motion is critically damped.
4. Define ordinary point and singular point.
5. Find the general solution of $x^{2} y^{\prime \prime}-x y^{\prime}-8 y=0$ on $(0, \infty)$.
6. Write the system $y_{1}^{1}=y_{1}+2 y_{2}+2 e^{4 t}$ and $y_{2}^{1}=2 y_{1}+y_{2}+e^{4 t}$ in a matrix form and also write it in initial value problem and prove that it has a unique solution on $(-\infty, \infty)$.
7. From a partial differential equation by eliminating a, b from $z=(x+a)(y+b)$.
8. Solve $p e^{y}=q e^{x}$.
9. Solve $y z p+z x q=x y$.
10. Solve $\left(D^{3}-6 D^{2} D^{\prime}+11 D{D^{\prime}}^{2}-6{D^{\prime}}^{2}\right) z=0$.

SECTION - B
 ANSWER ANY FIVE QUESTIONS

(5X8=40)
11. Find a particular solution of $y^{\prime \prime}-4 y^{\prime}+3 y=e^{3 x}\left(6+8 x+12 x^{2}\right)$.
12. Compute a_{0} to a_{7} in the series solution $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ of the initial value problem $\left(1+2 x^{2}\right) y^{\prime \prime}+10 x y^{\prime}+8 y=0, y(0)=2, y^{\prime}(0)=-3$.
13. (i) Verify that $y=\frac{1}{5}\binom{8}{7} e^{4 t}+c_{1}\binom{1}{1} e^{3 t}+c_{2}\binom{1}{-1} e^{-t}$ is the solution of $y^{\prime}=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right) y+\binom{2}{1} e^{4 t}$.
(ii) Find the solution of the initial value problem

$$
y^{\prime}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) y+\binom{2}{1} e^{4 t}, y(0)=\frac{1}{5}\binom{3}{22} .
$$

14. Solve $z=p x+q y+c \sqrt{1+x^{2}+y^{2}}$.
15. Solve $\left(D^{2}-6 D D^{\prime}+9 D^{\prime 2}\right) z=12 x^{2}+36 x y$.
16. Solve $p\left(1+q^{2}\right)=q(z-a)$.
17. Find the general solution and a fundamental Set of solutions of $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0$ given that $y_{1}=x$ is a solution.

SECTION - C

$(2 \times 20=40)$

ANSWER ANY TWO QUESTIONS

18. (a) Solve the initial value problem $\left(x^{2}-1\right) y^{\prime \prime}+4 x y^{\prime}+2 y=\frac{2}{x+1}$, $y(0)=-1, y^{\prime}(0)=-5$ given that $y_{1}=\frac{1}{x-1}$ and $y_{2}=\frac{1}{x+1}$ are solutions of the complementary equation $\left(x^{2}-1\right) y^{\prime \prime}+4 x y^{\prime}+2 y=0$.
(b) Let x_{0} be an arbitrary real number. Find the power series in $x-x_{0}$ for the general solution $y^{\prime \prime}+y=0$.
19. (a) Find a fundamental set of Frobenius solution of
$2 x^{2}\left(1+x+x^{2}\right) y^{\prime \prime}+x\left(9+11 x+11 x^{2}\right) y^{\prime}+\left(6+10 x+7 x^{2}\right) y=0$.
Compute the first six coefficients a_{0} to a_{5} in each solution.
(b) State Euler's equation.
(c) State regular singular point.
(d) State the existence of solution of initial value problem for linear system of differential equations.
20. (a) Solve $p x+q y=z(1+p q)^{1 / 2}$.
(b) Solve $\frac{\partial^{3} z}{\partial x^{3}}-\frac{\partial^{3} z}{\partial y^{3}}=x^{3} y^{3}$.

AAAAAAAAA

