STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2015–16& thereafter)

SUBJECT CODE : 15MT/MC/DC14

B. Sc. DEGREE EXAMINATION, NOVEMBER 2018 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	:	MAJOR – CORE
PAPER	:	DIFFERENTIAL CALCULUS
TIME	:	3 HOURS

MAX. MARKS: 100

(10X2=20)

SECTION – A ANSWER ALL THE QUESTIONS

1. Find y_n if $y = (ax + b)^m$.

2. If
$$x = t^3 + 1$$
 and $y = t^2 - 2$ find $\frac{d^2 y}{dx^2}$.

- 3. Find the n^{th} differential coefficient of xe^{x} .
- 4. Define envelope of the family of curves.
- 5. Find the envelope of the family of circles $(x a)^2 + y^2 = 2a$, where *a* is the parameter.
- 6. Find the radius of curvature of the curve $y = e^x$ at x = 0.
- 7. Define curvature of a curve.
- 8. Write the formula of radius of curvature in polar form.
- 9. If $u = x^3 y^2 (6 x y)$ then find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.

10. Discuss the symmetry of the following curves (a) $x^2 = y^2 \frac{y+a}{y-a}$ (b) $x^3 + y^3 = 3axy$

SECTION – B (5X8=40) ANSWER ANY FIVE QUESTIONS

11. Find the n^{th} differential coefficient of (a) $\frac{1}{4x^2 - 1}$ (b) sin $x \sin 2x \sin 3x$. (4+4)

12. If $y = a \cos(\log x) + b \sin(\log x)$ then show that $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$.

- 13. Find the envelope of the family of straight lines $y + tx = 2at + at^{3}$, the parameter being t.
- 14. Prove that the circle of curvature of the curve y = 4x at the point $(t^2, 2t)$, cuts the curve again at a point whose ordinate is -6t.

15. Prove that the radius of curvature of the cardioid $r = a(1 - \cos \theta)$ is $\frac{4a}{3} \sin \frac{\theta}{2}$

- 16. Find the *p*-*r* equation of the parabola $\frac{2a}{r} = 1 \cos \theta$.
- 17. Show that the maximum value of $x^2 y^2 z^2$ subject to the restriction $x^2 + y^2 + z^2 = a^2$ is $\left(\frac{a^2}{3}\right)^3$.

15MT/MC/DC14

SECTION – C (2X20=40) ANSWER ANY TWO QUESTIONS

18. (a) Find the n^{th} derivative of $\sin^3 x \cos^2 x$

(b) If
$$y = \frac{\sinh^{-1} x}{\sqrt{1+x^2}}$$
 then prove that $(1+x^2) y_{n+2} + (2n+3) x y_{n+1} + (n+1)^2 y_n = 0$. (10+10)

19. (a) Find the envelope of the circles drawn on the radius vectors of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 as diameter

(b) Prove that the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta)$ and

$$y = a(1 - \cos \theta)$$
 is $4a \cos \frac{\theta}{2}$. (10+10)

20. (a) Prove that the evolute of the parabola $y^2 = 4ax$ is $27 ay^2 = 4(x - 2a)^3$. (b) Trace the curve y = (x - 1)(x - 2)(x - 3). (10+10)

###