STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015–16 & thereafter)

SUBJECT CODE: 15MT/MC/AS55

B. Sc. DEGREE EXAMINATION, NOVEMBER 2018 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE	:	MAJOR – CORE
PAPER	:	ALGEBRAIC STRUCTURES
TIME	:	3 HOURS

MAX. MARKS : 100

SECTION – A

Answer all questions:

- 1. Let S be the set of all integers and let $a \sim b$ if a b is an even integer. Prove that \sim is an equivalence relation of S.
- 2. Let G be any Group and let $a \in G$. Define the Cyclic subgroup generated by 'a'.
- 3. State the Lagrange's theorem on order of a subgroup.
- 4. Define a normal subgroup.
- 5. What do you mean by an automorphism of a Group G?
- 6. State the Cayley's theorem.
- 7. Define a ring with unit element.
- 8. Define a ring homomorphism.
- 9. What do you mean by a 'Maximal Ideal' of a ring?
- 10. When can you say that a ring R can be embedded in a ring '?

SECTION – B

Answer any five questions:

- 11. Let *G* be a Group and let $a \in G$. Prove that $Ha = \{x \in G \mid a \equiv x \mod H\}$.
- 12. If H and K are subgroups of G then prove that HK is a subgroup of G if and only if HK = KH.
- 13. If ϕ is a homomorphism of G into G' with kernel K, then prove that K is a Normal subgroup of G.
- 14. Let G be a Group and let ϕ be an automorphism of G. If $a \in G$ is of order o(a) > 0, then prove that $o(\phi(a)) = o(a)$.
- 15. Prove that a finite Integral domain is a Field.

$(5 \times 8 = 40)$

 $(10 \times 2 = 20)$

- 16. If ϕ is a homomorphism of *R* into *R'*, prove that $\phi(0) = 0$ and for all $a \in R$, $\phi(-a) = -\phi(a)$.
- 17. Let *R* be a commutative ring with unit element whose only ideals are (0) and *R* itself.Then prove that *R* is a Field.

SECTION - C

Answer any two questions:

consisting of all even permutations.

$(2 \times 20 = 40)$

(12)

- 18. (a) Prove that a non-empty subset *H* of the group *G* is a subgroup of *G* if and only if (i) $a, b \in H \Rightarrow ab \in H$ and (ii) $a \in H \Rightarrow a^{-1} \in H$ (5)
 - (b) Let ϕ be a homomorphism of a group *G* onto another group *G'* with kernel *K*. Then prove that $G/K \approx G'$. (15)
- 19. (a) Prove that a subgroup N of G is a normal subgroup of G if and only if gng⁻¹ = N, for every g ∈ G.
 (8) (b) Prove that S_n has a normal subgroup of index 2 the alternating group A_n
- 20. (a) If 'p' is a prime number then prove that J_p , the ring of integers mod p, is a field. (5)
 - (b) If φ is a homomorphism of R into R' with kernel I(φ) then prove that if a ∈ I(φ) and r ∈ R then both 'ar' and 'ra' are in I(φ).
 (5)
 - (c) If *R* is a commutative ring with unit element and *M* is an Ideal of *R*, then prove that *M* is a maximal ideal of *R* if and only if *R/M* is a Field.