STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015-16& thereafter)

SUBJECT CODE: 15MT/AC/MC15

B. Sc. DEGREE EXAMINATION, NOVEMBER 2018 BRANCH IV - CHEMISTRY FIRST SEMESTER

COURSE : ALLIED – CORE

PAPER : MATHEMATICS FOR CHEMISTRY – I

TIME : 3 HOURS MAX. MARKS : 100

$\begin{array}{c} \text{SECTION} - A \\ \text{ANSWER ALL THE QUESTIONS} \end{array} \tag{10 X 2 = 20) }$

1. State Cayley Hamilton theorem.

2. Find the eigen value of the matrix $A = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$.

3. If α and β are the roots of $2x^2 + 3x + 5 = 0$ find a) $\alpha + \beta$ b) $\alpha \beta$

- a) α + β
 b) α β
 4. Diminish the roots of x⁴ 5x³ + 7x² 4x + 5 = 0 by 2 and find the transformed equation.
- 5. Find the n^{th} derivative of $\frac{1}{ax+b}$.
- 6. Evaluate $\int \frac{1}{(x+1)\sqrt{1-x^2}} dx.$
- 7. From the partial differential equation by eliminating arbitrary constants from $z = (x^2 + a)(y^2 + b)$.
- 8. Solve px + qy = z.
- 9. State Newton's backward interpolation formula.
- 10. Define the 'difference operators' Δ and E.

- 11. Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$
- 12. Solve the equation $x^4 + 2x^3 16x^2 22x + 7 = 0$ which has a root $2 + \sqrt{3}$.
- 13. Solve the equation $3x^3 26x^2 + 52x 24 = 0$. Whose roots are in G.P?
- 14. Find the n^{th} derivative of $\frac{1}{(x+1)(x+3)}$.
- 15. Evaluate $\int \frac{dx}{(x+2)\sqrt{x+3}}.$
- 16. Solve $p^2 + q^2 = 4$.
- 17. Find f(5) from the following:

<i>x</i> :	3	4	6	
f(x):	4	13	43	

SECTION – C ANSWER ANY TWO QUESTIONS

 $(2 \times 20 = 40)$

18. Find eigen value and eigen vectors of

a)
$$\begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & -1 \\ -7 & 2 & -3 \end{bmatrix}$$

b) Solve
$$6x^5 + 11x^4 - 33x^3 - 33x^2 + 11x + 6 = 0$$
.

19. a) If
$$y = a \cos(\log x) + b \sin(\log x)$$
 show that $x^2y_2 + xy_1 + y = 0$ and $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$.

b) Evaluate
$$\int \frac{dx}{(x-1)\sqrt{x^2+2x-8}} .$$

20. a) Solve
$$z(x-y) = x^2p - y^2q$$
.

b) A function f(x) given by the following table.

Find f(0.2) by Newton's forward formula:

Τ.) (· · ·) · · · · · · · · · · · · · ·										
	x	0	1	2	3	4	5	6			
	f(x)	176	185	194	203	212	220	229			
