STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2015-16 & thereafter)

SUBJECT CODE : 15MT/PC/MI24

M. Sc. DEGREE EXAMINATION, APRIL 2019 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE: COREPAPER: MEASURE THEORY AND INTEGRATIONTIME: 3 HOURSMAX. MARKS : 100

SECTION - A

Answer all the questions:

5×2=10

- 1. Define measureable sets.
- 2. Define rings and give an example.
- 3. Prove that every continuous function is measurable.
- 4. Let f = g a.e. (μ), where μ is a complete measure. Show that if f is measurable, so is g.
- 5. Show that if f is a non-negative measurable function then $\int f \, dx = 0$ if and only if, $f = 0 \, a. e.$
- 6. When do you say a bounded function f on [a, b] is Riemann integrable?
- 7. Define convex and strictly convex functions.
- 8. If $f_n \to f$ in the mean of order p (p > 0), prove that $f_n \to f$ in measure.
- 9. Define signed measures.
- 10. Define Radon-Nikodym derivative.

SECTION – B

Answer any five questions:

5×6=30

- 11. For any sequence of sets $\{E_i\}$, prove that $m^*(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} m^*(E_i)$.
- 12. Prove that every interval is measurable.
- 13. If f and g are measurable functions on the same measurable set E prove that f + g, f g and fg are measurable.
- 14. Let $f(x), (0 \le x \le 1)$ be defined by $f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ n & \text{if } x \text{ is irrational} \end{cases}$

where *n* is the number of zeros immediately after the decimal representation of *x*. Show that *f* is measurable and compute $\int_0^1 f \, dx$. 15. If f and g be non-negative measurable functions then prove that

$$\int f \, dx + \int g \, dx = \int (f+g) dx$$

16. Prove that every convex function on an open interval is continuous.

17. If $\int f d\mu$ is defined and if $\varphi(E) = \int_E f d\mu$ prove that φ is a signed measure.

SECTION - C

Answer any three questions:

- 18. a) Prove that the class \mathfrak{M} of all Lebesque measurable sets is a σ –algebra.
 - b) If $m^*(E) < \infty$ then prove that *E* is measurable if and only if $\forall \varepsilon > 0$, there exists disjoint finite intervals I_1, I_2, \dots, I_n such that $m^*(E\Delta \bigcup_{i=1}^n I_i) < \varepsilon$.
- 19. a) Establish the existence of non-measurable sets.
 - b) Prove that not every measurable set is a Borel set.
- 20. State and prove :
 - a) Fatou's Lemma.
 - b) Dominated convergence theorem.
- 21. a) If $1 \le p \le \infty$ and $\{f_n\}$ is a sequence in $L^p(\mu)$ such that $||f_n f_m|| \to 0$ as $n, m \to \infty$ prove that there exists a function f and a subsequence $\{n_i\}$ such that $\{f_{n_i}\} = 0$ a. e,

 $f \in L^{p}(\mu)$ and $\lim ||f_{n} - f_{m}||_{p} = 0.$

- b) If $\{f_n\}$ is a sequence of measurable functions which is fundamental in measure, prove that there exists a measurable function f such that $f_n \to f$ in measure.
- 22. State and prove Radon-Nikodym theorem.

3×20=60