STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2015–16 & thereafter)

SUBJECT CODE: 15MT/PC/DG44

M. Sc. DEGREE EXAMINATION, APRIL 2019 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE : CORE PAPER : DIFFERENTIAL GEOMETRY TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A (5x2=10) ANSWER ALL THE QUESTIONS

- 1. Compute the curvature of $\gamma(t) = (t, cosht)$.
- 2. Define loxodrome curve.
- 3. Compute the first fundamental form of the surface $\sigma(u, v) = (coshu, sinhu, v)$.
- 4. When do you say a curve γ on a surface S is asymptotic?
- 5. Prove that any normal section of a surface is a geodesic.

SECTION - B (5x6=30) ANSWER ANY FIVE QUESTIONS

- 6. Find the curvature of the circular helix $\gamma(\theta) = (a\cos\theta, a\sin\theta, b\theta), -\infty < \theta < \infty$, where *a* and *b* are constants.
- 7. Let $f: S_1 \to S_2$ be a diffeomorphism. If σ_1 is an allowable surface patch on S_1 , prove that $f \circ \sigma_1$ is an allowable surface patch on S_2 .
- 8. Prove that any tangent developable is isometric to a plane.
- 9. State and prove Meusnier's theorem.
- 10. Prove that a curve on a surface is geodesic if and only if its geodesic curvature is zero everywhere.
- 11. Prove that the area of a surface patch is unchanged by reparametrisation.
- 12. Prove that an isometry between two surfaces take the geodesics of one surface to the geodesic of the other.

SECTION - C (3x20=60) ANSWER ANY THREE QUESTIONS

- 13. (a) Prove that a parametrised curve has a unit speed reparametrisation if and only if it is regular.
 - (b) Let $\bar{\gamma}(t)$ be a regular curve in R^3 with nowhere vanishing curvature. Prove that denoting d/dt by a dot, its torsion is given by $\tau = \frac{(\bar{\gamma} x \, \bar{\gamma}).\bar{\gamma}}{||\bar{\gamma} x \, \bar{\gamma}||^2}$. (10 + 10)
- 14. (a) Let U and \overline{U} be open subsets of R^2 and let $\sigma: U \to R^3$ be a regular surface patch. Let $\emptyset: \overline{U} \to U$ be a bijective smooth map with smooth inverse map $\emptyset^{-1}: U \to \overline{U}$. Prove that $\tilde{\sigma} = \sigma \circ \emptyset: \overline{U} \to R^3$ is a regular surface patch.
 - (b) Show that the Möbius band is not orientable. (10+10)
- 15. Prove that a diffeomorphism $f: S_1 \to S_2$ is conformal if and only if, for any surface patch σ_1 on S_1 , the first fundamental forms of σ_1 and $f \sigma_1$ are proportional.
- 16. Let κ_1 and κ_2 be the principal curvatures at a point *P* of a surface patch σ . Prove that
 - (i) κ_1 and κ_2 are real numbers;
 - (ii) if $\kappa_1 = \kappa_2 = \kappa$, say then $\mathcal{F}_{II} = \kappa \mathcal{F}_I$ and (hence) every tangent vector to σ at *P* is a principal vector;
 - (iii) if $\kappa_1 \neq \kappa_2$, then any two (non-zero) principal vectors t_1 and t_2 corresponding to κ_1 and κ_2 , respectively, are perpendicular.
- 17. State and prove Gauss's theorem along with necessary lemma.