STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
 (For candidates admitted from the academic year 2015-16 \& thereafter)

SUBJECT CODE: 15MT/PC/CI44
M. Sc. DEGREE EXAMINATION, APRIL 2019

BRANCH I - MATHEMATICS
FOURTH SEMESTER

COURSE : CORE
 PAPER : CALCULUS OF VARIATION AND INTEGRAL EQUATIONS
 TIME : 3 HOURS MAX. MARKS : 100

SECTION—A (5x2=10)
 ANSWER ALL THE QUESTIONS

1. In extremizing the functional $I[y(x)]=\int_{a}^{b} F\left(x, y(x), y^{\prime}(x)\right) d x$ if F depends only on x and y^{\prime}, then write the Euler's equation.
2. Show that the diffracted rays form the surface of the cone.
3. Find the kernel of the of the integral equation $\int_{0}^{x} \frac{y(t)}{\sqrt{x-t}} d t=\sqrt{x}$.
4. Reduce the initial value problem $y^{\prime}-y=0 ; y(0)=0$ into Volterra integral equation of the second kind.
5. Define index of eigenvalue.

SECTION-B (5x6=30)
ANSWER ANY FIVE QUESTIONS
6. Using Bernstein theorem show that there exists an extremal through any two points with distinct abscissae for the functional $I=\int_{0}^{x} e^{-2 y^{2}}\left(y^{\prime 2}-1\right) d x$
7. Find the extremum of the functional $\int_{x_{1}}^{x_{2}}\left(y^{\prime 2}+z^{\prime 2}+2 y z\right) d x$ with $y(0)=0=z(0)$ and the point $\left(x_{2}, y_{2}, z_{2}\right)$ moves over the fixed plane $x=x_{2}$.
8. Show that $y(x)=x e^{x}$ is the solution of the integral equation

$$
y(x)=\sin x+2 \int_{0}^{x} \cos (x-t) y(t) d t
$$

9. Find the initial value problem corresponding to the integral equation $y(x)=1+\int_{0}^{x} y(t) d t$.
10. Show that the in the integral equation $y(x)=\lambda \int_{0}^{1} \sin \pi x \cos \pi t y(t) d t$ has no eigenfunctions.
11. Reduce the initial value problem $y^{\prime \prime}-5 y^{\prime}+6 y=0 ; y(0)=0 ; y^{\prime}(0)=-1$ into Volterra integral equation of the second kind.
12. Find the shortest path from the point $\mathrm{A}(-2,3)$ to the point $(2,3)$ located in the region $y \leq x^{2}$.

SECTION-C ($3 \times 20=60$)

 ANSWER ANY THREE QUESTIONS13. (a) Determine the shape of a solid of revolution moving in a flow of gas with least resistance.
(b) Derive Euler-Poisson equation in testing the extremum of the functional depending on higher-order derivatives.
14. (a) Find the extremals with corner points of the functional $I[y(x)]=\int_{c_{1}}^{x_{2}} y^{\prime 2}\left(1-y^{\prime}\right)^{2} d x$.
(b) Find the curve that extremizes the functional $I[y(x)]=\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}\right) d x$ and passes through the points $A\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the curve must arrive at B only after reflection from a given curve $y=f(x)$.
15. (a) Show that $y(x)=e^{x}\left(\cos e^{x}-e^{x} \sin e^{x}\right)$ is a solution of the integral equation $y(x)=\left(1-x e^{2 x}\right) \cos 1-e^{2 x} \sin 1+\int_{0}^{x}\left[1-(x-t) e^{2 x}\right] y(t) d t$.
(b) Show that the function $y(x)=\sin \left(\frac{\pi x}{2}\right)$ is a solution of the Fredholm integral equation

$$
y(x)-\frac{\pi^{2}}{4} \int_{0}^{1} K(x, t) y(t) d t=\frac{x}{2}, \text { where } K(x, t)= \begin{cases}\frac{x(2-t)}{2} & \text { if } 0 \leq x \leq t \\ \frac{t(2-x)}{2} & \text { if } t \leq x \leq l\end{cases}
$$

16. Obtain Fredholm integral equation of second kind corresponding to the boundary value problem $\frac{d^{2} \varphi}{d x^{2}}+\lambda \varphi=x ; \varphi(0)=0 ; \varphi(1)=1$. Also recover the boundary value problem from the integral equation obtained.
17. (a) Show that the homogeneous integral equation $y(x)=\lambda \int_{0}^{1}(t \sqrt{x}-x \sqrt{t}) y(t) d t$ does not have real eigenvalues and eigen functions.
(b) Find the eigenvalues and eigenfunctions of the homogeneous integral equation $y(x)=\lambda \int_{-1}^{1}\left(5 x t^{3}+4 x^{2} t+3 x t\right) y(t) d t$.

ahacacalacaal

