STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086 M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2019 -2020)

INTRODUCTION TO BIOINFORMATICS

CODE: 19BI/PE/IB23

CREDITS : 3 L T P : 3 0 0 TOTAL TEACHING HOURS : 39

OBJECTIVES OF THE COURSE

- To become familiar with bioinformatics and how it's changing complex biological research
- To enable textual mining of biological literature and bioinformatics tools that are required to query biological data
- To understand the application of information technology in biological research

COURSE LEARNING OUTCOMES

On Successful completion of the course, the student will be able to

- Better understanding of the bioinformatics concepts
- Emphasis the application of bioinformatics and biological databases to problem solving in real research problems
- Perform a complete analysis of the genes and protein
- Understand the evolutionary concepts related to biological query

Unit 1

Introduction to Bioinformatics

- 1.1 Introduction to Bioinformatics, Classification of biological databases, Biological data formats, Application of bioinformatics in various fields
- 1.2 Introduction to single letter code of amino acids, symbols used in nucleotides
- 1.3 Data retrieval systems- Entrez and SRS

Unit 2

Sequence and Structure analysis

- 2.1 Introduction to Sequence alignment. BLAST, Multiple sequence alignment
- 2.2 Structural Databases PDB and other online tools
- 2.3 Visualizing tools Rasmol, Pymol

Unit 3

Phylogenetic analysis

- 3.1 Evolutionary analysis: distances, Cladistic and Phenetic methods
- 3.2 Clustering Methods. Rooted and unrooted tree representation

3.3 Bootstrapping strategies, Tools for Phylogenetic tree construction

(8 Hours)

(8 Hours)

(8 Hours)

(7 Hours)

Unit 4

Genomics

4.1 Genome - Gene finding methods,

- 4.2 Gene prediction tools
- 4.3 Repeat Sequence finder

Unit 5

Proteomics

- 5.1 Proteomics Protein structure levels of organisation
- 5.2 Protein separation techniques SDS-PAGE
- 5.3 Restriction Enzymes and Mapping

BOOKS FOR STUDY

Pevsner and Jonathan. Bioinformatics and Genomics Functional. USA: John Wiley, 2003.

- Baxevanis, Andreas D. and Francis B.F. Ouellette. *Bioinformatics- A Practical Guide to the Analysis of Genes and Proteins*. USA: John Wiley, 2001.
- David W. Mount. *Bioinformatics Sequence and Genome Analysis*. INDIA: CBS Publishers, 2003.

BOOKS FOR REFERENCE

Baldi P. and Brunak S. Bioinformatics: Machine Learning Approach. USA: MIT Press, 2003.

Chen, Yi-Ping Phoebe. Bioinformatics Technologies. Germany: Springer, 2005.

- Durbin R, S. Eddy, A. Krogh and G. Mitchison.*Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.* USA: Cambridge University Press, 2005.
- Higgins, Des and Willie Taylor. *Bioinformatics Sequence, Structure and Databanks Practical Approach*. UK: Oxford University Press, 2001.

Lesk, Arthur M. Introduction to Bioinformatics. UK: Oxford University Press, 2014.

JOURNALS

BMC Bioinformatics Bioinformatics Journal of Bioinformatics and Computational Biology Journal of Biomedical Informatics Journal of Integrative Bioinformatics PLoS Computational Biology

WEB RESOURCES

http://bioinformaticsweb.net/tools.html https://www.bits.vib.be/index.php/training/122-basic-bioinformatics http://bioinformaticssoftwareandtools.co.in/ http://www.genscript.com/tools.html

(8 Hours)

(8 Hours)

PATTERN OF ASSESSMENT

Continuous Assessment Test:	Total Marks: 50	Duration: 90 minutes
Section $A - 10 \ge 10$ Marks (All question		
Section B - $2 \times 10 = 20$ Marks (2 out of 4		
Section C - $1x 20 = 20$ Marks (1 out of 2 t	o be answered)	

Other Components:

Assignment/Test/Seminars

Total Marks:50

End Semester Examination:Total Marks: 100Section $A - 20 \ge 1 = 20$ Marks (All questions to be answered)Section $B - 4 \ge 10 = 40$ Marks (4 out of 7 to be answered)Section $C - 2 \ge 20 = 40$ Marks (2 out of 4 to be answered)

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086 M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2019 -2020)

COMPUTER AIDED DRUG DESIGN

CODE: 19BI/PE/CD23

CREDITS : 3 L T P : 3 0 0 TOTAL TEACHING HOURS : 39

Duration: 3 Hours

OBJECTIVES OF THE COURSE

- To understand the general pathway for drug discovery and development
- To define new methodologies for analysis of ligands with their bound protein target
- To gain an in-depth overview of methods and techniques applied in computer assisted drug design (CADD)
- To learn about computer-aided drug design, safety evaluation, bioavailability and clinical trials

COURSE LEARNING OUTCOMES

On Successful completion of the course, the student will be able to

- Identify the key elements in drug and explain new methodologies for drug design
- Describe the role and importance of the various disciplines involved in the different phases of drug discovery and development
- Review and evaluate preclinical and clinical pharmaceutical studies
- Follow new ideas in utilizing main approaches of ligand screening methods

Unit 1

(7 Hours)

Drug Discovery and Development

- 1.4 Drug Development Process Overview The Changing Landscape of drugs development
- 1.5 Drug Discovery Phases
- 1.6 Preclinical Phase studies

Unit 2

Regulations in Drug Discovery

- 2.1 FDA regulations on Drug Development
- 2.2 Indian Regulatory Systems
- 2.3 Ethical Considerations and Special Populations

Unit 3

Drug Target Identification

- 3.1 Computational inferences used to identify and validate small molecule drug targets
- 3.2 Databases for Drug targets, Retrieving protein structure and visualisation
- 3.3 Target Discovery and Validation, Active Site Prediction

Unit 4

Ligand Based Drug Design

- 4.1 Screening of lead molecules Natural products and their analogues
- 4.2 Chemical Databases PubChem, Drug Bank
- 4.3 Chemical file formats, Retrieving drug molecules

Unit 5

Pharmacokinetics and Molecular Docking

- 5.1 Pharmacokinetics ADME Prediction
- 5.2 Pharmacodynamics
- 5.3 Molecular Docking Scoring and evaluation

BOOKS FOR STUDY

- Claudio N. Cavasotto. In Silico Drug Discovery and Design: Theory, Methods, Challenges, and Applications. USA: Taylor & Francis Group, 2017
- Charifson P S. *Practical Application of Computer Aided Drug Design*. New York: Dekker, 1997

BOOKS FOR REFERENCE

- Andrew R. Leach. *Molecular Modeling: Principles and Applications*. USA: Prentice Hall, 2007.
- Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algorithms to applications. USA: Academic Press, 2002.

Alan Hinchliffe. Molecular Modelling for Beginners. USA: John Wiley & Sons, 2008

Luca Monticelli, Emppu Salonen. *Biomolecular Simulations: Methods and Protocols*. USA: Humana Press, 2016.

(8 Hours)

(8 Hours)

(8 Hours)

(8 Hours)

JOURNALS

Journal of Molecular Graphics and Modelling Journal of Computer-Aided Molecular Design Current Computer Aided-Drug Design

WEB SOURCES

http://accessengineeringlibrary.com/browse/computer-aided-drug-design-and-delivery systems http://www.southernresearch.org/life-sciences/lead-discovery-and-optimization/medicinalchemistry/computational-chemistry http://www.ch.ic.ac.uk/local/organic/mod/

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086 M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2019 -2020)

COMPUTER AIDED DRUG DESIGN

CODE: 19BI/PE/CD23

CREDITS : 3 L T P : 3 0 0 TOTAL TEACHING HOURS : 39

OBJECTIVES OF THE COURSE

- To understand the general pathway for drug discovery and development
- To define new methodologies for analysis of ligands with their bound protein target
- To gain an in-depth overview of methods and techniques applied in computer assisted drug design (CADD)
- To learn about computer-aided drug design, safety evaluation, bioavailability and clinical trials

COURSE LEARNING OUTCOMES

On Successful completion of the course, the student will be able to

- Identify the key elements in drug and explain new methodologies for drug design
- Describe the role and importance of the various disciplines involved in the different phases of drug discovery and development
- Review and evaluate preclinical and clinical pharmaceutical studies
- Follow new ideas in utilizing main approaches of ligand screening methods

Unit 1

Drug Discovery and Development

- 1.7 Drug Development Process Overview The Changing Landscape of drugs development
- 1.8 Drug Discovery Phases
- 1.9 Preclinical Phase studies

(7 Hours)

Unit	2	(8 Hours)
	Regulations in Drug Discovery	
	2.4 FDA regulations on Drug Development	
	2.5 Indian Regulatory Systems	
	2.6 Ethical Considerations and Special Populations	
Unit	3	(8 Hours)
	Drug Target Identification	` ´
	3.4 Computational inferences used to identify and validate small molecule targets	drug
	3.5 Databases for Drug targets, Retrieving protein structure and visualisati 3.6 Target Discovery and Validation, Active Site Prediction	ion
Unit	4	(8 Hours)
Ι	Ligand Based Drug Design	
4.4 Sci	reening of lead molecules - Natural products and their analogues	
4.5 Ch	emical Databases – PubChem, Drug Bank	
1 Ch	amigal file formate. Detriaging drug malagulas	
4.0 Ch	emical file formats, Retrieving drug molecules	
		(8 Hours)
Unit	5	(8 Hours)
	5 Pharmacokinetics and Molecular Docking	(8 Hours)
	 5 Pharmacokinetics and Molecular Docking 5.4 Pharmacokinetics - ADME Prediction 	(8 Hours)
	5 Pharmacokinetics and Molecular Docking	(8 Hours)
	5 Pharmacokinetics and Molecular Docking 5.4 Pharmacokinetics - ADME Prediction 5.5 Pharmacodynamics	(8 Hours)

BOOKS FOR STUDY

- Claudio N. Cavasotto. In Silico Drug Discovery and Design: Theory, Methods, Challenges, and Applications. USA: Taylor & Francis Group, 2017
- Charifson P S. *Practical Application of Computer Aided Drug Design*. New York: Dekker, 1997

BOOKS FOR REFERENCE

- Andrew R. Leach. *Molecular Modeling: Principles and Applications*. USA: Prentice Hall, 2007.
- Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algorithms to applications. USA: Academic Press, 2002.

Alan Hinchliffe. Molecular Modelling for Beginners. USA: John Wiley & Sons, 2008

Luca Monticelli, Emppu Salonen. *Biomolecular Simulations: Methods and Protocols*. USA: Humana Press, 2016.

JOURNALS

Journal of Molecular Graphics and Modelling Journal of Computer-Aided Molecular Design Current Computer Aided-Drug Design

WEB SOURCES

http://accessengineeringlibrary.com/browse/computer-aided-drug-design-and-delivery systems

http://www.southernresearch.org/life-sciences/lead-discovery-and-optimization/medicinalchemistry/computational-chemistry

http://www.ch.ic.ac.uk/local/organic/mod/

PATTERN OF ASSESSMENT

Continuous Assessment Test:Total Marks: 50Duration: 90 minutesSection $A - 10 \ge 10$ Marks (All questions to be answered)Section $B - 2 \ge 10$ Marks (2 out of 4 to be answered)Duration: 90 minutesSection $C - 1 \ge 20$ Marks (1 out of 2 to be answered)Section $C - 1 \ge 20$ Marks (1 out of 2 to be answered)Section $C - 1 \ge 20$ Marks (1 out of 2 to be answered)				
Other Components: Assignment/Test/Seminars	Total Marks: 50			
End Semester Examination:	Total Marks: 100	Duration: 3 Hours		

Section A $- 20 \times 1 = 20$ Marks (All questions to be answered) Section B - $4 \times 10 = 40$ Marks (4 out of 7 to be answered) Section C - $2 \times 20 = 40$ Marks (2 out of 4 to be answered)

Duration: 3 Hours

PATTERN OF ASSESSMENT

Continuous Assessment Test: Section A – 10 x 1 = 10 Marks (All of Section B – 2 x 10 = 20 Marks (2 of Section C – 1x 20 = 20 Marks (1 of	questions to be answered) but of 4 to be answered)	Duration: 90 minutes
Other Components: Assignment/Test/Seminars	Total Marks: 50	
End Semester Examination: Section A $- 20 \times 1 = 20$ Marks (All Section B $- 4 \times 10 = 40$ Marks (4 of Section C $- 2 \times 20 = 40$ Marks (2 of	out of 7 to be answered)	Duration: 3 Hours