STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086. (For candidates admitted during the academic year 2015-16 and thereafter)

SUBJECT CODE : 15PH/MC/MP44

B.Sc. DEGREE EXAMINATION APRIL 2019 BRANCH III - PHYSICS FOURTH SEMESTER

COURSE	:	MAJOR – CORE
PAPER	:	MATHEMATICAL PHYSICS
TIME	:	3 HOURS.

MAX. MARKS :100

SECTION – A

ANSWER ALL QUESTIONS:

 $(30 \times 1 = 30)$

I Choose the Correct Answer:

1. If \vec{r} is the position vector of a point, then the value of grad (1/r) is ______. (a) \vec{r}/r^3 (b) $-\vec{r}/r^3$ (c) $-1/r^3$ (d) $1/r^3$.

2.	The gravitation field is the	of the gravitational potential
	(a) inverse	(b) directional derivative
	(c) negative gradient	(d) positive gradient.

- 3. Work done by a force $\vec{F} = 4\hat{i} + \hat{j} 3\hat{k}$ on a particle when it is displaced through $\vec{r} = 4\hat{\iota} + 2\hat{\jmath} - 2\hat{k}$ is given by _____ (b) 12 units (c) $16\hat{i} + 2\hat{j} + 6\hat{k}$ (d) $(16\hat{i} + 2\hat{j} + 6\hat{k})/\sqrt{296}$ (a) 24 units
- 4. A vector is called a solenoidal vector when, _____ (b) curl $\vec{A} = 0$ (c) grad $\vec{A} = 0$ (d) div curl $\vec{A} = 0$. (a) div $\vec{A} = 0$
- 5. If a rigid body is in motion, the curl of its ______ at any point gives twice its angular velocity (a) Position vector (b) angular acceleration (c) linear velocity (d) linear acceleration
- 6. According to Maxwell's equation, the divergence of electric field \vec{E} is directly proportional to (a) magnetic constant (b) charge density (c) current density (d) electric constant
- 7. If \vec{A} and \vec{B} are irrotational, then $\vec{A} \times \vec{B}$ is (d) irrotational (a) solenoidal (b) lamellar (c) conservative
- 8. The theorem relates the line and surface integrals. (a) Stoke's (b) Gauss (c) Green's (d) Helmholtz

...2

- 9. The magnetic scalar potential ϕ_B satisfies the _____ equation. (a) Poisson's (b) equation of continuity (c) Euler's equation (d) Laplace equation 10. The solutions $y_1(x)$ and $y_2(x)$ of a second order linear differential equation are linearly independent if (a) $Ay_1(x) + By_2(x) = 0$ (b) $Ay_1(x) + By_2(x) = constant$ (c) $Ay_1(x) + By_2(x) \neq 0$ (d) $Ay_1(x) = By_2(x)$ 11. A differential equation of the form y'' + P(x) y' + Q(x) = F(x) is called homogeneous if (a) F(x) = 0(b) $F(x) \neq 0$ (c) F(x) = a constant(d) P(x) = Q(x)12. The equations of electromotive force in terms of current 'i' for an electrical circuit having resistance R and a condenser of capacity C in series is E =(d) iR + $\int iC.dt$ (a) $Ri + \int i/C.dt$ (b) $Rdi/dt + \int i/C.dt$ (c) $i/R + \int i/C.dt$ 13. The crystallographic point groups are altogether _____ in number. (a) 64 (b) 14 (c) 32 (d) infinite 14. If a molecule has ______, then any vibration that is active in IR is inactive in Raman and vice-versa. (a) centre of inversion (b) axis of symmetry (d) centre of symmetry (c) rotational symmetry 15. Which of the following is a proper symmetry operation? (a) 'n' fold axis of rotation, C_n (b) Reflection, σ (c) inversion through center of symmetry, i (d) rotary – reflection, S_n **II** Fill in the blanks: 16. The gradient of any scalar quantity is a _____. 17. The equation of continuity is _____. 18. If $\nabla^2 \phi = 0$ is true for every point of a region, the function ϕ is said to be _____ in the
 - region. 19. When the roots of auxiliary equation of a LCR circuit are imaginary, the condition of
 - oscillation is called ______.
 - 20. If a representation is ______, it is called as faithful representation.

...3

III State whether True or false:

- 21. The directional derivative of vector-point function along any line is same as the directional derivative of scalar-point function along the line.
- 22. For a vector to be irrotational, its curl should be a non-zero quantity.
- 23. Bernoulli's equation is valid only for non-viscous fluids.
- 24. The degree of a differential equation is the order of the highest derivative which appears in it.
- 25. Every group is a subgroup of itself.

IV. Answer briefly:

- 26. State the rules for partial differentiation of vectors.
- 27. If $u = yz^2 \hat{\imath} 3xz^2 \hat{\jmath} + 2xyz \hat{k}$ and $\phi = xyz$, find $u x(\nabla \phi)$.
- 28. State Green's theorem.
- 29. What are the laws to be followed for the formation of differential equation for an electric circuit?
- 30.State any two group axioms.

SECTION – B

Answer any FIVE of the following:

- 31. Find the rate of change of $\phi = xyz$ in the direction normal to the surface $x^2y + y^2x + yz^2 = 3$ at the point (1, 1, 1).
- 32. Find div grad r^m.
- 33. Find the value of a, b and c such that $\vec{F} = (3x-4y+az)\hat{i} + (cx+5y-2z)\hat{j} + (x-by+7z)\hat{k}$ is irrotational.
- 34. Calculate the work done in moving a particle in the force field $\vec{F} = 3x^2\hat{\imath} + (2xz-y)\hat{\jmath} + z\hat{k}$ along the curve defined by $x^2 = 4y$ and $3x^2 = 8z$ from x = 0 to x = 2
- 35. State Gauss divergence theorem and explain its physical significance.
- 36. A particle falls under gravity in a resisting medium whose resistance varies with velocity. Find the relation between distance and velocity if initially the particle starts from rest.
- 37. Write a note on 2 dimensional rotational groups.

SECTION – C

Answer any THREE of the following:

38. (a) Write a note on (i) level surfaces (ii) gradient of a scalar field.

(b) Let $\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = xy.\exp(x^2+z^2-5)$. Calculate the gradient of **f**at the point (1, 3, -2) and calculate the directional derivative at the point (1, 3, -2) in the direction of the vector $\vec{\mathbf{v}} = (3, -1, 4)$

(3x15 = 45)

 $(5 \times 5 = 25)$

39. (a) Define curl of a vector function. Explain the physical significance of curl of a vector function.

(b) Show that curl $(\phi \mathbf{A}) = \phi (\nabla \mathbf{x} \mathbf{A}) + (\nabla \phi \mathbf{x} \mathbf{A})$.

- 40. Obtain the equation of continuity and the equation of motion for the flow of an incompressible fluid using vector methods.
- 41. Form the differential equation for a spring system under undampedforced oscillations and discuss the different ways amplitude of oscillations vary according to frequency variations.
- 42. Explain how symmetry operations determine the IR and Raman active vibrations, giving suitable examples.
