STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2015-16 and thereafter)

SUBJECT CODE: 15PH/AC/PH43

B.Sc. DEGREE EXAMINATION APRIL 2019 BRANCH IV – CHEMISTRY FOURTH SEMESTER

COU PAPI TIMI		ALLIED – CORE PHYSICS– II 3 HOURS.	ΓΙΟΝ – Α	MAX. MARKS:100			
ANS	WER ALL QU	JESTIONS:		(30x1=30)			
Choo	se the correct	Answer:					
1.	called	_	narge in bringing it from				
2.	c) Electric po	tensity at infinity otential at that point lectric flux is	<u> </u>	b) electric potential at that pointd) electric intensity at that point			
			mb ² (c) N/Coulomb	(d) Nm/Coulomb			
3.	The capacity is C =	_	citor when it is completel	y filled with a dielectric			
	(a) $\varepsilon_0 A/d$		(c) $K \epsilon_0 A_1 A_2 / d$	(d) $K \varepsilon_0 A/d$			
4.	The tangent to a line of magnetic induction at any point gives the direction of at that point						
	a) Magnetic field vector, Bc) Force F		d) polarisation ve	b) electric field vector, Ed) polarisation vector P			
5.	An electron with velocity 'v' is injected into a uniform field \overrightarrow{B} . The force on it is						
	b) along the c) perpendicu	ular to the direction of the direction of the motion of ular to the direction of the ular to the direction of the	f the electron	and the magnetic field.			
6.	The permea phenomena.	bility µin magnetic pho	enomena is analogous	to in electric			
7.			c) reluctance d) nometer is time (c) $\pi/2T$ (d				
8.	a) it oscillate		er is kept small to make _ e c) amplitude of fi	irst oscillation small			

9.	According to right-hand rule for circular current, the thumb points in the direction of								
	a) magnetic field d) torque	b) current carrying conductor		c) circular current					
10.	Under conditions of thermal equilibrium, if N_1 and N_2 are number of atoms in higher and lower energy states, by Boltzmann Law, (a) $N_2 < N_1$ (b) $N_2 > N_1$ (c) $N_2 = N_1$ (d) $N_2 = 0$								
	(a) $N_2 < N_1$	(b) $N_2 > N_1$	(c) $N_2 = N_1$ (d) N ₂	=0				
11.	materials are used to make fibre optic cables.								
		b) conducting			d) dielectric				
12.	Construction of optical fibres is based on this optical phenomena.								
	a) Total internal reflection								
	c) diffraction		d) interference						
13.	Unit of measurement of slew rate is								
		(b) A/sec							
14.	According to de Morgan's I theorem, NAND = a) Bubbled OR b) Bubbled AND c) NOR								
					d) Ex-OR				
15.	The open – loop again for practical OP-AMP like 741 is				(1) 0				
	(a) 200,000	$(p) \infty$	(c) I		(d) 0				
Fill in	the blanks:								
		e to the charge distribu	ution at a point is	given l	287				
		s $\nabla \times \vec{E}$ and $\nabla \times \vec{B}$ imp	•	_	•				
			ry that a changing	; electri	ic field can				
	erate a a		atio.						
		equivalent to a magne ctors to energise the pu		hotone	in a lacar baam ic				
	ed	ctors to energise the po	aise of concrent p	HOTOHS	in a fasci ocam is				
		wave shaping circuits	decide the						
20. 111	e ice time constant in	wave snaping eneuris	decide the						
State	whether true or false	:							
21. Th	e flux of electric field	\vec{E} through any closed s	surface is equal to	ε ₀ tim	nes the total charge				
end	closed by the surface.								
22. Th	e unit of measurement	of χ_{m} is amp/metre.							
23. Fo	rces that are equal in n	nagnitude and opposite	e in direction cons	stitute a	a couple.				
		onal images are produ							
25. Th	e value of CMRR for	a differential amplifier	is infinity.						
Angre	n huiafly.								
	er briefly: fine relative permittiv	ity of a madium							
	-	•	's equations						
	27. State any one physical significance of Maxwell's equations. 28. Define figure of merit of a ballistic galvanometer.								
	_	f optical fibre systems		on use					
	ate any two laws of Bo		mai are in commit	on use.					
50. Bu	ac any two laws of Do	orearr argeora.							

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 31. Five thousand lines of force enter a certain volume of space and three thousand lines leave it. Find the total charge contained in it.
- 32. A uniform magnetic field of magnitude 1.5Wb/m² points horizontally from south to north. A proton of energy 5.0MeV moves vertically downward through this field. Calculate the force on it.
- 33. A condenser charged to 2 volts is discharged through a ballistic galvanometer, when the corrected deflection is 9.6cms and current sensitivity is 4.54×102 mm/ μ A and the periodic time is 12 seconds. Calculate the capacity of the condenser.
- 34. With the help of neat ray diagram, explain how images are produced in holography technique.
- 35. Write a brief note on use of fibre optic cables in telecommunication systems.
- 36. Realise the given Boolean expression using only NAND gates.

 $Y = A\overline{B} + \overline{A}B$

37. In an inverting OP-AMP circuit, the input resistance Ri = $10K\Omega$, input voltage Vi = 1V, feedback resistance Rf = $100K\Omega$ and load resistance = $25K\Omega$. Find the output voltage and current.

SECTION – C ANSWER ANY THREE QUESTIONS:

 $(3 \times 15 = 45)$

- 38. What is the necessary condition for applying Gauss's law? Use the law to find the expression for electric field due to a uniformly charged sphere.
- 39. Draw the hysteresis curve of a magnetic material and explain the terms retentivity and coercivity based on it. What are the uses of hysteresis curve?
- 40. Outline the construction and working of moving coil ballistic galvanometer.
- 41. Draw a neat diagram and explain the population inversion process that takes place in CO₂ laser.
- 42. Discuss the working of OP-AMP as integrator and differentiator. What are the shapes of output waveforms possible for different input waves?
