STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted from the academic year 2015-16B\& thereafter)
SUBJECT CODE : 15MT/MC/VL65

B. Sc. DEGREE EXAMINATION, APRIL 2019

BRANCH I - MATHEMATICS
SIXTH SEMESTER

COURSE : MAJOR CORE
 PAPER : VECTOR SPACES AND LINEAR TRANSFORMATIONS
 TIME
 SECTION - A

ANSWER ALL QUESTIONS.

$(10 \times 2=20)$

1. Define isomorphism on Vector spaces.
2. If V is a vector space over F then prove that $\alpha 0=0$ for $\alpha \in F$.
3. If F is the field of real numbers then prove that the vectors $(1,1,0,0),(0,1,-1,0)$ and $(0,0,0,3)$ are linearly independent over F.
4. Define a linear combination of $v_{1}, v_{2}, \ldots, v_{n}$ over the field F.
5. Define an orthogonal complement of a subspace W of a vector space V.
6. Prove that W^{\perp} is a subspace of V.
7. If $\lambda \in F$ is a characteristic root of $T \in A(V)$ then prove that $\lambda v=v T$.
8. If $T \in A(V)$ and if $S \in A(V)$ is regular then prove that $r(T)=r\left(S T S^{-1}\right)$.
9. Prove that the matrix $A=\left[\begin{array}{cc}-4 & -6 \\ 3 & 5\end{array}\right]$ is diagonalizable.
10. Consider the linear operator $T(x, y)=(3 x+y, x+3 y)$ on R^{2}. Find a matrix representation of T.

SECTION -B

ANSWER ANY FIVE QUESTIONS.

11. Let V_{n} be the set of polynomials of degree less than n. Prove that V_{n} is a vector space over F.
12. Prove that F^{n} is isomorphic to F^{m} if and only if $n=m$.
13. If a, b, c are real numbers such that $a>0$ and $a \lambda^{2}+2 b \lambda+c \geq 0$ for all real numbers λ then prove that $b^{2} \leq a c$.
14. If $\lambda \in F$ is a characteristic root of $T \in A(V)$ then prove that λ is a root of the minimal polynomial of T.
15. Consider the linear transformation $T: R^{3} \rightarrow R^{2}$ defined as $(1,0,0)=(3,-1)$, $T(0,1,0)=(2,1), T(0,0,1)=(3,0)$. Find $T(1,-2,3)$.
16. If U and W are subspaces of V then prove that $U+W=\{v \in V: v=u+w, u \in U, w \in W\}$ is a subspace of V.
17. Prove that similar matrices have same eigenvalues.

SECTION -C

ANSWER ANY TWO QUESTIONS.

18. (a) If F is the internal direct sum of $U_{1}, U_{2}, \ldots, U_{n}$ then prove that V is isomorphic to the external direct sum of $U_{1}, U_{2}, \ldots, U_{n}$.
(b) If V is finite dimensional and if W is a subspace of V then prove that $\operatorname{dim} \frac{V}{W}=\operatorname{dim} V-\operatorname{dim} W$.
19. (a) Let V be with the set of all polynomials of degree ≤ 2 together with the zero polynomial. V is a inner product defined by $(p(x), q(x))=\int_{-1}^{1} p(x) q(x) d x$, $p(x), q(x) \in V$ Starting with the basis $\left\{1, x, x^{2}\right\}$, obtain an orthonormal basis for V.
(b) If V is finite dimensional over F then prove that T is invertible if and only if the constant term of the minimal polynomial for T is not 0 .
20. Diagonalize the matrix $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4\end{array}\right]$ by orthogonally.
