STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086 (For candidates admitted from the academic year 2015-16 \& thereafter)

SUBJECT CODE : 15MT/MC/SF45

B. Sc. DEGREE EXAMINATION, APRIL 2019
 BRANCH I - MATHEMATICS
 FOURTH SEMESTER

COURSE : MAJOR CORE
PAPER : SEQUENCE, SERIES AND FOURIER SERIES TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS:

$(10 \times 2=20)$

1. Define: Countable set.
2. Define : least upper bound of a set.
3. Define : limit of a sequence.
4. When do you say that a sequence is bounded?
5. When do you say that a sequence is a Cauchy sequence?
6. Define : absolute convergence of a series.
7. State the comparison test for absolute convergence of a series.
8. State : Abel's Lemma..
9. Define : odd and even function.
10. Find the Fourier coefficient a_{o} for $f(x)=x^{2},-\pi \leq x \leq \pi$.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

11. Prove that the countable union of countable sets is countable.
12. Show that if $\lim _{n \rightarrow \infty} s_{n}=L$ and $\lim _{n \rightarrow \infty} s_{n}=M$, then $L=M$.
13. If $\left\{s_{n}\right\}_{n=1}^{\infty}$ is convergent, then prove that $\left\{s_{n}\right\}_{n=1}^{\infty}$ is bounded.
14. Show that a convergent sequence is a Cauchy sequence.
15. If $\sum_{n=1}^{\infty} a_{n}$ is a series of nonnegative numbers with $s_{n}=a_{1}+a_{2}+\cdots . .+a_{n}(n \in I)$, prove that $\sum_{n=1}^{\infty} a_{n}$ converges if $\left\{s_{n}\right\}_{n=1}^{\infty}$ is bounded.
16. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be sequences of real numbers and let $s_{n}=a_{1}+a_{2}+\cdots . .+a_{n}$. Prove that for each $n \in I$, $\sum_{k=1}^{n} a_{k} b_{k}=s_{n} b_{n+1}-\sum_{k=1}^{n} s_{k}\left(b_{k+1}-b_{k}\right)$.
17. Find a sine series for $f(x)=c$, in the range 0 to π, where c is a constant.

SECTION - C

ANSWER ANY TWO QUESTIONS:

18. (a) Show that the set of all real numbers is uncountable.
(b) If $\left\{s_{n}\right\}_{n=1}^{\infty}$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ are sequences of real numbers and if $\lim _{n \rightarrow \infty} s_{n}=L, \lim _{n \rightarrow \infty} t_{n}=M$, show that $\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}\right)=L+M$.

$$
(10+10)
$$

19. (a) State and prove the Ratio test.
(b) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

$$
(10+10)
$$

20. (a) State and prove the nested interval theorem.
(b) Express $f(x)=\frac{1}{2}(\pi-x)$ as a Fourier series to be valid in the interval 0 to 2π.
