SUBJECT CODE : 15MT/MC/PM65

B. Sc. DEGREE EXAMINATION, APRIL 2019
 BRANCH I - MATHEMATICS
 SIXTH SEMESTER

COURSE	$:$ MAJOR CORE
PAPER	$:$ PRINCIPLES OF MECHANICS
TIME	$: 3$ HOURS

MAX. MARKS : 100

SECTION - A

ANSWER ALL QUESTIONS.

(10X2=20)

1. Define : force.
2. State the Triangle law of forces.
3. Define : moment of a force about a point.
4. Define : couple
5. State any two laws of static friction.
6. Define : Cone of friction.
7. Write the intrinsic equation of the common catenary?
8. Prove that $y^{2}=c^{2}+s^{2}$ for a common catenary.
9. Define : Moment of inertia.
10. State the Perpendicular Axes Theorem.

SECTION -B

ANSWER ANY FIVE QUESTIONS.
(5X8=40)
11. A weight of 50 N is suspended by two light inelastic strings of length 7 m and 24 m from two points at the same horizontal level 25 m apart. Find the tensions in the strings.
12. Two like parallel forces P and $Q(P>Q)$ act at points A and B of a rigid body. If P and Q are interchanged, show that the point of the resultant is displaced by $\frac{P-Q}{P+Q} A B$.
13. A rod whose centre of gravity divides it into two parts a and b is placed inside a smooth sphere. Show that if θ be its inclination to the horizonin the position of equilibrium and 2α be the angle subtended by the rod at the centre of the sphere, then $\tan \theta=\frac{b-a}{b+a} \tan \alpha$.
14. A body of weight W is in equilibrium on a rough inclined plane of angle $\alpha(\neq \lambda)$ under the action of a force P upwards at an angle θ to the line of greatest slope, in a vertical plane through the line of greatest slope. If the body is on the point of moving up the inclined plane, find P if the equilibrium is limiting and λ is the angle of friction.
15. An endless uniform chain rests in equilibrium over a smooth pulley and is in contact with it over three quarters of the circumference. Show that the length of the free portion is $\frac{\sqrt{2}}{\log (\sqrt{2}+1)}$ times the radius of the pulley.
16. Discuss the motion of a particle falling under gravity in a medium whose resistance varies as the square of the velocity. Also find the relation between velocity and displacement.
17. A circular disc of mass 30 kgms and radius 1 metre is mounted axially and rotates at the rate of 100 revolutions per minute. Find the kinetic energy of rotation.

SECTION -C

ANSWER ANY TWO QUESTIONS.

$(2 \times 20=40)$
18. (a) The resultant of two forces P and Q acting at an angle θ is R ; that of the forces 2 P and Q acting at the same angle is $2 R$ and the resultant of forces P and 2Q acting at $\left(180^{\circ}-\theta\right)$ is 2 R . Prove that $\mathrm{P}: \mathrm{Q}: \mathrm{R}=\sqrt{6}: \sqrt{2}: \sqrt{5}$.
(b) A ladder rests in limiting equilibrium with its lower end on a rough horizontal plane and the other end against a rough vertical wall. The centre of gravity divides the ladder into two portions of lengths a and b. Find the position of limiting equilibrium.

$$
(10+10)
$$

19. (a) State and prove Varignons Theorem.
(b) Find the moment of inertia of a thin uniform rod of length $2 a$ and mass M about a line through one end and perpendicular to it.

$$
(10+10)
$$

20. (a) Derive the cartesian equation of the common catenary.
(b) A uniform chain of length $2 l$ is to be suspended from two points A and B in the same horizontal line so that either terminal tension is n times that at the lowest point. Show that the span AB must be $\frac{2 l}{\sqrt{n^{2}-1}} \log _{e}\left(n+\sqrt{n^{2}-1}\right)$.
