STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted from the academic year 2015-16 \& thereafter)

SUBJECT CODE : 15MT/MC/AG25

B. Sc. DEGREE EXAMINATION, APRIL 2019
 BRANCH I - MATHEMATICS
 SECOND SEMESTER

COURSE : MAJOR CORE
 PAPER : ANALYTICAL GEOMETRY TIME : 3 HOURS

MAX. MARKS : 100

SECTION A

Answer All Questions:

1. Write the condition for the second degree equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ to be a parabola and hyperbola.
2. Prove that the sum of the squares of the conjugate semi-diameters of an ellipse is constant.
3. Write the equation of the tangent of rectangular hyperbola in parametric form.
4. Find the intercepts which the plane $4 x-3 y+2 z-7=0$ that makes with the co-ordinate axes.
5. Find the angle between the planes $x+y+2 z=3$ and $2 x-y+z=6$
6. Find the distance between the two planes $2 x-2 y+z+3=0$ and $4 x-4 y+2 z+5=0$
7. If the straight line $\frac{x-1}{2}=\frac{y-3}{3}=\frac{z-4}{1}$ meets the plane $x-2 y-4 z+7=0$, find its point of contact.
8. Find the equation of the straight line which passes through the point $(2,5,8)$ and the plane $3 x+5 y-2 z+6=0$
9. If the equation of the sphere is $x^{2}+y^{2}+z^{2}-6 x-2 y-4 z-11=0$, find its centre.
10. Define: Right circular cone.

SECTION B

Answer Any Five Questions:

$$
5 \times 8=40
$$

11. Find the nature of the conic $17 x^{2}-12 x y+8 y^{2}+46 x-28 y+17=0$ and find its centre and length of the conic.
12. Prove that the orthocentre of a triangle inscribed in a rectangular hyperbola lies on a rectangular hyperbola.
13. Find the equation of the plane passing through the line of intersection of the planes $2 x+3 y+3 z-4=0$ and $4 x-y+5 z-7=0$ which is perpendicular to the plane $x+3 y-4 z+6=0$
14. Find the symmetrical form of the equation of the line of intersection of the plane $x+5 y-z-7=0$ and $2 x-5 y+3 z+1=0$.
15. Find the shortest distance between the lines $\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1}, \frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2}$.
16. Find the equation of the sphere having the circle $x^{2}+y^{2}+z^{2}-2 x+4 y-6 z+7=0$, $2 x-y+2 z=5$ for a great circle.
17. Find the equation to the right circular cone whose vertex is at the origin, whose axis is the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and which has a vertical angle of 60°.

SECTION C

Answer Any Two Questions:

18. (a) Find the equation of the hyperbola conjugate to $4 x^{2}+13 h x y+3 y^{2}+x+3 y-25=0$
(b) A rectangular hyperbola whose centre is C is cut by any radius r in four points P, Q, R, S. Prove that $C P^{2}+C Q^{2}+C R^{2}+C S^{2}=4 r^{2}$.
19. (a) Find the equation of the plane passing through the point $(2,5,-3),(-2,-3,5)$ and (5,3,-3)
(b) Find the image of the line $\frac{x-1}{2}=\frac{y+2}{-5}=\frac{z-3}{2}$ in the plane $2 x-3 y+2 z+3=0$.
20. (a) Prove that the lines $\frac{x+1}{-3}=\frac{y+10}{8}=\frac{z-1}{2} ; \frac{x+3}{-4}=\frac{y+1}{7}=\frac{z-4}{1}$ are coplanar. Find also their point of intersection and the plane through them.
(b) Show that the plane $2 x-y-2 z=16$ touches the sphere $x^{2}+y^{2}+z^{2}-4 x+2 y+2 z-3=0$ and find its point of contact.

alacalaca

