STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2015-16 & thereafter)

SUBJECT CODE: 15MT/MC/AG25

B. Sc. DEGREE EXAMINATION, APRIL 2019 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE : MAJOR CORE

PAPER : ANALYTICAL GEOMETRY

TIME : 3 HOURS MAX. MARKS : 100

SECTION A

Answer All Questions:

 $10 \times 2 = 20$

- 1. Write the condition for the second degree equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ to be a parabola and hyperbola.
- 2. Prove that the sum of the squares of the conjugate semi-diameters of an ellipse is constant.
- 3. Write the equation of the tangent of rectangular hyperbola in parametric form.
- 4. Find the intercepts which the plane 4x-3y+2z-7=0 that makes with the co-ordinate axes.
- 5. Find the angle between the planes x + y + 2z = 3 and 2x y + z = 6
- 6. Find the distance between the two planes 2x-2y+z+3=0 and 4x-4y+2z+5=0
- 7. If the straight line $\frac{x-1}{2} = \frac{y-3}{3} = \frac{z-4}{1}$ meets the plane x-2y-4z+7=0, find its point of contact.
- 8. Find the equation of the straight line which passes through the point (2,5,8) and the plane 3x+5y-2z+6=0
- 9. If the equation of the sphere is $x^2 + y^2 + z^2 6x 2y 4z 11 = 0$, find its centre.
- 10. Define: Right circular cone.

SECTION B

Answer Any Five Questions:

 $5 \times 8 = 40$

- 11. Find the nature of the conic $17x^2 12xy + 8y^2 + 46x 28y + 17 = 0$ and find its centre and length of the conic.
- 12. Prove that the orthocentre of a triangle inscribed in a rectangular hyperbola lies on a rectangular hyperbola.
- 13. Find the equation of the plane passing through the line of intersection of the planes 2x+3y+3z-4=0 and 4x-y+5z-7=0 which is perpendicular to the plane x+3y-4z+6=0
- 14. Find the symmetrical form of the equation of the line of intersection of the plane x+5y-z-7=0 and 2x-5y+3z+1=0

- 15. Find the shortest distance between the lines $\frac{x-3}{-1} = \frac{y-4}{2} = \frac{z+2}{1}$, $\frac{x-1}{1} = \frac{y+7}{3} = \frac{z+2}{2}$.
- 16. Find the equation of the sphere having the circle $x^2 + y^2 + z^2 2x + 4y 6z + 7 = 0$, 2x y + 2z = 5 for a great circle.
- 17. Find the equation to the right circular cone whose vertex is at the origin, whose axis is the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and which has a vertical angle of 60°.

SECTION C

Answer Any Two Questions:

 $2 \times 20 = 40$

- 18. (a) Find the equation of the hyperbola conjugate to $4x^2 + 13hxy + 3y^2 + x + 3y 25 = 0$
 - (b) A rectangular hyperbola whose centre is C is cut by any radius r in four points P, Q, R, S. Prove that $CP^2 + CQ^2 + CR^2 + CS^2 = 4r^2$. (10+10)
- 19. (a) Find the equation of the plane passing through the point (2,5,-3), (-2,-3,5) and (5,3,-3)
 - (b) Find the image of the line $\frac{x-1}{2} = \frac{y+2}{-5} = \frac{z-3}{2}$ in the plane 2x-3y+2z+3=0. (10+10)
- 20. (a) Prove that the lines $\frac{x+1}{-3} = \frac{y+10}{8} = \frac{z-1}{2}$; $\frac{x+3}{-4} = \frac{y+1}{7} = \frac{z-4}{1}$ are coplanar. Find also their point of intersection and the plane through them.
 - (b) Show that the plane 2x y 2z = 16 touches the sphere $x^2 + y^2 + z^2 4x + 2y + 2z 3 = 0$ and find its point of contact.

(10+10)

