STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015-16 & thereafter)

SUBJECT CODE: 15CH/MC/SP64

B.Sc. DEGREE EXAMINATION, APRIL 2019 BRANCH IV - CHEMISTRY SIXTH SEMESTER

COURSE PAPER TIME	: SPEC	OR – CORE CTROSCOPY DURS	MAX. MAR	RKS : 100			
	LL THE QUI		- A	(30x1=30)			
I Choose the	e correct answ	er:					
1. Accordin	g to Beer-Lam	bert Law, absorbance d	loes not depend on				
a) Extinc	tion coefficient	t of the sample	b) Colour of t	the solution			
c) Solutio	c) Solution concentration d) Distance that the light has travelled through the sample.						
2. The wave does this	-	rption is 495 nm. In wh	hat part of the electrom	agnetic spectrum			
a) Microv	wave	b) radiowave	c) UV-Visible	e d) Infrared			
3. Which of	3. Which of the following statements is correct?						
a) Microwave radiation possesses more energy than infra radiation							
		a shorter wavelength t					
	c) UV radiation has a longer wavelength than infrared radiation						
,		a lower wavenumber t	6				
		mula to the number of	degrees of vibrational	freedom. Which pair			
is correct							
a) CO ₂ ; 4		b) H ₂ S;4	, _,				
		transitions between rot					
		b) $J = 1 \leftarrow J = 2$		a) $J = I \leftarrow J = 0$			
b. Benzene a) $\pi - \pi$		$\underline{\qquad}$ electronic transiti	c) $\sigma - \sigma^*$	d) $n - \pi^*$			
/		,	/	$\mathbf{u}) \ n - n$			
	7. Which of the following statements is <i>incorrect</i> ?						
	a) Mass spectrometry provides direct structural datab) Mass spectrometry gives information about fragmentation patterns						
		ways observed in the m		nds			
		patterns are observed in		ind b			
· 1		ing molecules would yo	*	ctive fundamentals			
	nan inactive an		· · · · · · · · · · · · · · · · · · ·				
a) NO ₂		b) fluorobenzene	c) benzene	d) fluoroethene			
9. In the pro	oton NMR spe	ctra recorded for p-xyl	-	zene), the number of			
resonances observed are							
a) 1		b) 2	c) 3	d) 0			
		m of a compound A					
spectrum there is a singlet. Which compound is consistent with these data?							
a)bromoe	ethane	b) dichloromethane	c) acetone	d) ethanol			

II Fill in the blanks:

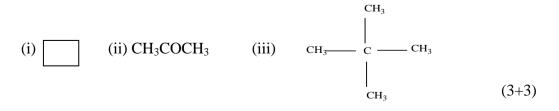
- 11. The decrease in polarity of the solvent will have _____ shift in the $n \rightarrow \pi^*$ transition.
- 12. The highest electronic energy transition of covalent molecule is______.
- 13. In Raman spectrum, if λ is the wavelength of incident radiation, then the anti-stoke's lines will have wavelength equal to _____.
- 14. Water has ______ normal modes of vibrations.
- 15. In N₂O molecule, the bond sequence N-N-O or N-O-N is confirmed by_______.spectroscopy.
- 16. The number of spin states possible for ¹H nucleus is _____
- 17. In ¹H NMR spectroscopy, the coupling of two hydrogen atoms on adjacent carbon atoms is called ______.
- 18. The number of different types of protons that are present in ethyl bromide is _____.
- 19. The peak set to 100% relative intensity in a mass spectrum is _____
- 20. In the case of chloro compounds, M^+ and $[M^++2]$ peaks are formed with the intensity ratio of _____.

III State whether true or false:

- 21. ¹⁴N has magnetic moment.
- 22. The unit of absorbance in Beer Lambert's law is cm⁻¹.
- 23. Glass cuvettes are used for holding samples in IR spectrometers.
- 24. A compound containing an even number of nitrogen atoms gives a molecular ion with an even mass number.
- 25. Radiowaves are ionizing radiations.

IV Answer briefly in one or two lines:

- 26. What is an isotope peak?
- 27. Define diamagnetic shielding.
- 28. Define Franck Condon principle.
- 29. Acetylenic proton absorbs at upfield compared to ethylenic proton, although the former is attached to a more electronegative carbon. Explain.
- 30. Which of the following molecule would show rotational spectra? Why? H₂, HCl, CO.


SECTION – B

ANSWER ANY FIVE QUESTIONS:

(5X6=30)

- 31. How will distinguish between 1° , 2° and 3° alcohols using mass spectrometry?
- 32. a) Differentiate between IR and Raman Spectroscopy.

b) Predict the number of NMR signals observed in the following compounds.

15CH/MC/SP64

33. a) Arrange the following in their decreasing order of $v(C=O)$ value and justify	(2)			
your answer. HCHO, CH ₃ CHO, CH ₃ COCH ₃	(3)			
b) An organic compound with molecular formula C_4H_8O gave the following IR spe				
data: 1710 cm^{-1} , 2920-2850 cm ⁻¹ , 1420 cm ⁻¹ . Predict the structure of the compound	ınd.			
	(3)			
34. a) Distinguish between 2-bromopentane and 3-bromopentane using NMR spectral of	data?			
b) A solution of a dye absorbs light of wavelength 480 nm, and for this absorption, the				
extinction coefficient is 18600 dm ³ mol ⁻¹ cm ⁻¹ . A sample of the dye of unknown				
concentration is placed in an optical cell of path length 1 cm and the absorbanc				
reading is 0.18. What is the concentration of the solution?	(3+3)			
35. Explain Retro – Diels Alder and mclafferty rearrangement with an example each.	(3+3)			
36. a) What are the reference compound used in NMR spectral analysis and mentic characteristics?	on their			
b) Explain the effect of polar solvent on $n - \pi^*$ transistion.	(3+3)			
37. Explain the mass spectral fragmentation pattern of the following compounds				

(i) n-butanol (ii) toluene (iii) CH_3CHO (3x2)

SECTION – C

ANSWER ANY TWO QUESTIONS:

- 38. a) Discuss the theory of Mass spectrometry(8)
 - b) Calculate the moment of inertia, *I*, of the molecule ${}^{1}\text{H}^{35}\text{Cl}$. The masses of the two atoms are $m_{\text{H}} = 1.673 \text{ x } 10^{27} \text{ kg}$ and $m_{\text{Cl}} = 5.807 \text{ x } 10^{26} \text{ kg}$. The equilibrium bond length of the molecule is 1.275 Å. (4)
 - c) Calculate the absorption maxima for the following compounds. (4+4)

- 39. a) Explain the factors which affect chemical shift. (8)
 - b) Define the following. (2+2+2)
 - (i) Ring rule (ii) spin-spin splitting (iii) Pascal's triangle
 - c) A compound with the molecular formula C₈H₈O gives the following PMR spectral data: δ(ppm): 9.78 (t, 1H), 7.28 (m, 5H), 2.8 (d, 2H)

/3/

2X20=40

40. a) Using IR spectroscopy how would you distinguish between				
(i) Intra and Inter molecular hydrogen bonding (ii) Acetone and ethanol	(3+3)			
b) Draw the block Diagram of UV-Visible spectrophotometer	(3)			
c) Determine the structure of compound whose m/e values are $m/e = 74$ (molecular ion),				
56, 43, and 31 (base peak).	(6)			
d) Discuss the sampling technique in IR spectroscopy.	(5)			

/4/

_ /